Aromātai
\frac{59}{72}\approx 0.819444444
Tauwehe
\frac{59}{2 ^ {3} \cdot 3 ^ {2}} = 0.8194444444444444
Tohaina
Kua tāruatia ki te papatopenga
\frac{3\times 5}{4\times 6}+\frac{\frac{7}{8}}{\frac{9}{2}}
Me whakarea te \frac{3}{4} ki te \frac{5}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{15}{24}+\frac{\frac{7}{8}}{\frac{9}{2}}
Mahia ngā whakarea i roto i te hautanga \frac{3\times 5}{4\times 6}.
\frac{5}{8}+\frac{\frac{7}{8}}{\frac{9}{2}}
Whakahekea te hautanga \frac{15}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{5}{8}+\frac{7}{8}\times \frac{2}{9}
Whakawehe \frac{7}{8} ki te \frac{9}{2} mā te whakarea \frac{7}{8} ki te tau huripoki o \frac{9}{2}.
\frac{5}{8}+\frac{7\times 2}{8\times 9}
Me whakarea te \frac{7}{8} ki te \frac{2}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{5}{8}+\frac{14}{72}
Mahia ngā whakarea i roto i te hautanga \frac{7\times 2}{8\times 9}.
\frac{5}{8}+\frac{7}{36}
Whakahekea te hautanga \frac{14}{72} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{45}{72}+\frac{14}{72}
Ko te maha noa iti rawa atu o 8 me 36 ko 72. Me tahuri \frac{5}{8} me \frac{7}{36} ki te hautau me te tautūnga 72.
\frac{45+14}{72}
Tā te mea he rite te tauraro o \frac{45}{72} me \frac{14}{72}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{59}{72}
Tāpirihia te 45 ki te 14, ka 59.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}