Whakaoti mō x
x = -\frac{29}{4} = -7\frac{1}{4} = -7.25
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{4}\left(\frac{4}{3}\times \frac{1}{2}x+\frac{4}{3}\left(-\frac{1}{4}\right)-8\right)=\frac{3}{2}x+1
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{4}{3} ki te \frac{1}{2}x-\frac{1}{4}.
\frac{3}{4}\left(\frac{4\times 1}{3\times 2}x+\frac{4}{3}\left(-\frac{1}{4}\right)-8\right)=\frac{3}{2}x+1
Me whakarea te \frac{4}{3} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3}{4}\left(\frac{4}{6}x+\frac{4}{3}\left(-\frac{1}{4}\right)-8\right)=\frac{3}{2}x+1
Mahia ngā whakarea i roto i te hautanga \frac{4\times 1}{3\times 2}.
\frac{3}{4}\left(\frac{2}{3}x+\frac{4}{3}\left(-\frac{1}{4}\right)-8\right)=\frac{3}{2}x+1
Whakahekea te hautanga \frac{4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{3}{4}\left(\frac{2}{3}x+\frac{4\left(-1\right)}{3\times 4}-8\right)=\frac{3}{2}x+1
Me whakarea te \frac{4}{3} ki te -\frac{1}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3}{4}\left(\frac{2}{3}x+\frac{-1}{3}-8\right)=\frac{3}{2}x+1
Me whakakore tahi te 4 i te taurunga me te tauraro.
\frac{3}{4}\left(\frac{2}{3}x-\frac{1}{3}-8\right)=\frac{3}{2}x+1
Ka taea te hautanga \frac{-1}{3} te tuhi anō ko -\frac{1}{3} mā te tango i te tohu tōraro.
\frac{3}{4}\left(\frac{2}{3}x-\frac{1}{3}-\frac{24}{3}\right)=\frac{3}{2}x+1
Me tahuri te 8 ki te hautau \frac{24}{3}.
\frac{3}{4}\left(\frac{2}{3}x+\frac{-1-24}{3}\right)=\frac{3}{2}x+1
Tā te mea he rite te tauraro o -\frac{1}{3} me \frac{24}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{3}{4}\left(\frac{2}{3}x-\frac{25}{3}\right)=\frac{3}{2}x+1
Tangohia te 24 i te -1, ka -25.
\frac{3}{4}\times \frac{2}{3}x+\frac{3}{4}\left(-\frac{25}{3}\right)=\frac{3}{2}x+1
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{4} ki te \frac{2}{3}x-\frac{25}{3}.
\frac{3\times 2}{4\times 3}x+\frac{3}{4}\left(-\frac{25}{3}\right)=\frac{3}{2}x+1
Me whakarea te \frac{3}{4} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2}{4}x+\frac{3}{4}\left(-\frac{25}{3}\right)=\frac{3}{2}x+1
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{1}{2}x+\frac{3}{4}\left(-\frac{25}{3}\right)=\frac{3}{2}x+1
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1}{2}x+\frac{3\left(-25\right)}{4\times 3}=\frac{3}{2}x+1
Me whakarea te \frac{3}{4} ki te -\frac{25}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{2}x+\frac{-25}{4}=\frac{3}{2}x+1
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{1}{2}x-\frac{25}{4}=\frac{3}{2}x+1
Ka taea te hautanga \frac{-25}{4} te tuhi anō ko -\frac{25}{4} mā te tango i te tohu tōraro.
\frac{1}{2}x-\frac{25}{4}-\frac{3}{2}x=1
Tangohia te \frac{3}{2}x mai i ngā taha e rua.
-x-\frac{25}{4}=1
Pahekotia te \frac{1}{2}x me -\frac{3}{2}x, ka -x.
-x=1+\frac{25}{4}
Me tāpiri te \frac{25}{4} ki ngā taha e rua.
-x=\frac{4}{4}+\frac{25}{4}
Me tahuri te 1 ki te hautau \frac{4}{4}.
-x=\frac{4+25}{4}
Tā te mea he rite te tauraro o \frac{4}{4} me \frac{25}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-x=\frac{29}{4}
Tāpirihia te 4 ki te 25, ka 29.
x=-\frac{29}{4}
Me whakarea ngā taha e rua ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}