Aromātai
-\frac{13}{4}=-3.25
Tauwehe
-\frac{13}{4} = -3\frac{1}{4} = -3.25
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{4}-\frac{14}{4}-\frac{1}{6}+\frac{2}{3}-1
Ko te maha noa iti rawa atu o 4 me 2 ko 4. Me tahuri \frac{3}{4} me \frac{7}{2} ki te hautau me te tautūnga 4.
\frac{3-14}{4}-\frac{1}{6}+\frac{2}{3}-1
Tā te mea he rite te tauraro o \frac{3}{4} me \frac{14}{4}, me tango rāua mā te tango i ō raua taurunga.
-\frac{11}{4}-\frac{1}{6}+\frac{2}{3}-1
Tangohia te 14 i te 3, ka -11.
-\frac{33}{12}-\frac{2}{12}+\frac{2}{3}-1
Ko te maha noa iti rawa atu o 4 me 6 ko 12. Me tahuri -\frac{11}{4} me \frac{1}{6} ki te hautau me te tautūnga 12.
\frac{-33-2}{12}+\frac{2}{3}-1
Tā te mea he rite te tauraro o -\frac{33}{12} me \frac{2}{12}, me tango rāua mā te tango i ō raua taurunga.
-\frac{35}{12}+\frac{2}{3}-1
Tangohia te 2 i te -33, ka -35.
-\frac{35}{12}+\frac{8}{12}-1
Ko te maha noa iti rawa atu o 12 me 3 ko 12. Me tahuri -\frac{35}{12} me \frac{2}{3} ki te hautau me te tautūnga 12.
\frac{-35+8}{12}-1
Tā te mea he rite te tauraro o -\frac{35}{12} me \frac{8}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-27}{12}-1
Tāpirihia te -35 ki te 8, ka -27.
-\frac{9}{4}-1
Whakahekea te hautanga \frac{-27}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
-\frac{9}{4}-\frac{4}{4}
Me tahuri te 1 ki te hautau \frac{4}{4}.
\frac{-9-4}{4}
Tā te mea he rite te tauraro o -\frac{9}{4} me \frac{4}{4}, me tango rāua mā te tango i ō raua taurunga.
-\frac{13}{4}
Tangohia te 4 i te -9, ka -13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}