Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3}{3xy}\times \frac{y}{3x}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{3y}{3xy\times 3x}
Me whakarea te \frac{3}{3xy} ki te \frac{y}{3x} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{3xx}
Me whakakore tahi te 3y i te taurunga me te tauraro.
\frac{1}{3x^{2}}
Whakareatia te x ki te x, ka x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{3xy}\times \frac{y}{3x})
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3y}{3xy\times 3x})
Me whakarea te \frac{3}{3xy} ki te \frac{y}{3x} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{3xx})
Me whakakore tahi te 3y i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{3x^{2}})
Whakareatia te x ki te x, ka x^{2}.
-\left(3x^{2}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(3x^{2})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(3x^{2}\right)^{-2}\times 2\times 3x^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-6x^{1}\times \left(3x^{2}\right)^{-2}
Whakarūnātia.
-6x\times \left(3x^{2}\right)^{-2}
Mō tētahi kupu t, t^{1}=t.