Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{3}{3-\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 3+\sqrt{3}.
\frac{3\left(3+\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}
Whakaarohia te \left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(3+\sqrt{3}\right)}{9-3}
Pūrua 3. Pūrua \sqrt{3}.
\frac{3\left(3+\sqrt{3}\right)}{6}
Tangohia te 3 i te 9, ka 6.
\frac{1}{2}\left(3+\sqrt{3}\right)
Whakawehea te 3\left(3+\sqrt{3}\right) ki te 6, kia riro ko \frac{1}{2}\left(3+\sqrt{3}\right).
\frac{1}{2}\times 3+\frac{1}{2}\sqrt{3}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te 3+\sqrt{3}.
\frac{3}{2}+\frac{1}{2}\sqrt{3}
Whakareatia te \frac{1}{2} ki te 3, ka \frac{3}{2}.