Aromātai
4.5
Tauwehe
\frac{3 ^ {2}}{2} = 4\frac{1}{2} = 4.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{\frac{3}{2}-1}+\left(1-0.6\right)\left(-\frac{5}{2}\right)^{2}
Whakawehea te 3 ki te 3, kia riro ko 1.
\frac{1}{\frac{3}{2}-\frac{2}{2}}+\left(1-0.6\right)\left(-\frac{5}{2}\right)^{2}
Me tahuri te 1 ki te hautau \frac{2}{2}.
\frac{1}{\frac{3-2}{2}}+\left(1-0.6\right)\left(-\frac{5}{2}\right)^{2}
Tā te mea he rite te tauraro o \frac{3}{2} me \frac{2}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{\frac{1}{2}}+\left(1-0.6\right)\left(-\frac{5}{2}\right)^{2}
Tangohia te 2 i te 3, ka 1.
1\times 2+\left(1-0.6\right)\left(-\frac{5}{2}\right)^{2}
Whakawehe 1 ki te \frac{1}{2} mā te whakarea 1 ki te tau huripoki o \frac{1}{2}.
2+\left(1-0.6\right)\left(-\frac{5}{2}\right)^{2}
Whakareatia te 1 ki te 2, ka 2.
2+0.4\left(-\frac{5}{2}\right)^{2}
Tangohia te 0.6 i te 1, ka 0.4.
2+0.4\times \frac{25}{4}
Tātaihia te -\frac{5}{2} mā te pū o 2, kia riro ko \frac{25}{4}.
2+\frac{2}{5}\times \frac{25}{4}
Me tahuri ki tau ā-ira 0.4 ki te hautau \frac{4}{10}. Whakahekea te hautanga \frac{4}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
2+\frac{2\times 25}{5\times 4}
Me whakarea te \frac{2}{5} ki te \frac{25}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
2+\frac{50}{20}
Mahia ngā whakarea i roto i te hautanga \frac{2\times 25}{5\times 4}.
2+\frac{5}{2}
Whakahekea te hautanga \frac{50}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
\frac{4}{2}+\frac{5}{2}
Me tahuri te 2 ki te hautau \frac{4}{2}.
\frac{4+5}{2}
Tā te mea he rite te tauraro o \frac{4}{2} me \frac{5}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{9}{2}
Tāpirihia te 4 ki te 5, ka 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}