Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\times 6a^{2}}{174a^{2}}+\frac{29\left(a-2\right)}{174a^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 29 me 6a^{2} ko 174a^{2}. Whakareatia \frac{3}{29} ki te \frac{6a^{2}}{6a^{2}}. Whakareatia \frac{a-2}{6a^{2}} ki te \frac{29}{29}.
\frac{3\times 6a^{2}+29\left(a-2\right)}{174a^{2}}
Tā te mea he rite te tauraro o \frac{3\times 6a^{2}}{174a^{2}} me \frac{29\left(a-2\right)}{174a^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{18a^{2}+29a-58}{174a^{2}}
Mahia ngā whakarea i roto o 3\times 6a^{2}+29\left(a-2\right).
\frac{18\left(a-\left(-\frac{1}{36}\sqrt{5017}-\frac{29}{36}\right)\right)\left(a-\left(\frac{1}{36}\sqrt{5017}-\frac{29}{36}\right)\right)}{174a^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{18a^{2}+29a-58}{174a^{2}}.
\frac{3\left(a-\left(-\frac{1}{36}\sqrt{5017}-\frac{29}{36}\right)\right)\left(a-\left(\frac{1}{36}\sqrt{5017}-\frac{29}{36}\right)\right)}{29a^{2}}
Me whakakore tahi te 6 i te taurunga me te tauraro.
\frac{3\left(a+\frac{1}{36}\sqrt{5017}+\frac{29}{36}\right)\left(a-\left(\frac{1}{36}\sqrt{5017}-\frac{29}{36}\right)\right)}{29a^{2}}
Hei kimi i te tauaro o -\frac{1}{36}\sqrt{5017}-\frac{29}{36}, kimihia te tauaro o ia taurangi.
\frac{3\left(a+\frac{1}{36}\sqrt{5017}+\frac{29}{36}\right)\left(a-\frac{1}{36}\sqrt{5017}+\frac{29}{36}\right)}{29a^{2}}
Hei kimi i te tauaro o \frac{1}{36}\sqrt{5017}-\frac{29}{36}, kimihia te tauaro o ia taurangi.
\frac{\left(3a+\frac{1}{12}\sqrt{5017}+\frac{29}{12}\right)\left(a-\frac{1}{36}\sqrt{5017}+\frac{29}{36}\right)}{29a^{2}}
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te a+\frac{1}{36}\sqrt{5017}+\frac{29}{36}.
\frac{3a^{2}+\frac{29}{6}a-\frac{1}{432}\left(\sqrt{5017}\right)^{2}+\frac{841}{432}}{29a^{2}}
Whakamahia te āhuatanga tuaritanga hei whakarea te 3a+\frac{1}{12}\sqrt{5017}+\frac{29}{12} ki te a-\frac{1}{36}\sqrt{5017}+\frac{29}{36} ka whakakotahi i ngā kupu rite.
\frac{3a^{2}+\frac{29}{6}a-\frac{1}{432}\times 5017+\frac{841}{432}}{29a^{2}}
Ko te pūrua o \sqrt{5017} ko 5017.
\frac{3a^{2}+\frac{29}{6}a-\frac{5017}{432}+\frac{841}{432}}{29a^{2}}
Whakareatia te -\frac{1}{432} ki te 5017, ka -\frac{5017}{432}.
\frac{3a^{2}+\frac{29}{6}a-\frac{29}{3}}{29a^{2}}
Tāpirihia te -\frac{5017}{432} ki te \frac{841}{432}, ka -\frac{29}{3}.
\frac{3\times 6a^{2}}{174a^{2}}+\frac{29\left(a-2\right)}{174a^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 29 me 6a^{2} ko 174a^{2}. Whakareatia \frac{3}{29} ki te \frac{6a^{2}}{6a^{2}}. Whakareatia \frac{a-2}{6a^{2}} ki te \frac{29}{29}.
\frac{3\times 6a^{2}+29\left(a-2\right)}{174a^{2}}
Tā te mea he rite te tauraro o \frac{3\times 6a^{2}}{174a^{2}} me \frac{29\left(a-2\right)}{174a^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{18a^{2}+29a-58}{174a^{2}}
Mahia ngā whakarea i roto o 3\times 6a^{2}+29\left(a-2\right).
\frac{18\left(a-\left(-\frac{1}{36}\sqrt{5017}-\frac{29}{36}\right)\right)\left(a-\left(\frac{1}{36}\sqrt{5017}-\frac{29}{36}\right)\right)}{174a^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{18a^{2}+29a-58}{174a^{2}}.
\frac{3\left(a-\left(-\frac{1}{36}\sqrt{5017}-\frac{29}{36}\right)\right)\left(a-\left(\frac{1}{36}\sqrt{5017}-\frac{29}{36}\right)\right)}{29a^{2}}
Me whakakore tahi te 6 i te taurunga me te tauraro.
\frac{3\left(a+\frac{1}{36}\sqrt{5017}+\frac{29}{36}\right)\left(a-\left(\frac{1}{36}\sqrt{5017}-\frac{29}{36}\right)\right)}{29a^{2}}
Hei kimi i te tauaro o -\frac{1}{36}\sqrt{5017}-\frac{29}{36}, kimihia te tauaro o ia taurangi.
\frac{3\left(a+\frac{1}{36}\sqrt{5017}+\frac{29}{36}\right)\left(a-\frac{1}{36}\sqrt{5017}+\frac{29}{36}\right)}{29a^{2}}
Hei kimi i te tauaro o \frac{1}{36}\sqrt{5017}-\frac{29}{36}, kimihia te tauaro o ia taurangi.
\frac{\left(3a+\frac{1}{12}\sqrt{5017}+\frac{29}{12}\right)\left(a-\frac{1}{36}\sqrt{5017}+\frac{29}{36}\right)}{29a^{2}}
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te a+\frac{1}{36}\sqrt{5017}+\frac{29}{36}.
\frac{3a^{2}+\frac{29}{6}a-\frac{1}{432}\left(\sqrt{5017}\right)^{2}+\frac{841}{432}}{29a^{2}}
Whakamahia te āhuatanga tuaritanga hei whakarea te 3a+\frac{1}{12}\sqrt{5017}+\frac{29}{12} ki te a-\frac{1}{36}\sqrt{5017}+\frac{29}{36} ka whakakotahi i ngā kupu rite.
\frac{3a^{2}+\frac{29}{6}a-\frac{1}{432}\times 5017+\frac{841}{432}}{29a^{2}}
Ko te pūrua o \sqrt{5017} ko 5017.
\frac{3a^{2}+\frac{29}{6}a-\frac{5017}{432}+\frac{841}{432}}{29a^{2}}
Whakareatia te -\frac{1}{432} ki te 5017, ka -\frac{5017}{432}.
\frac{3a^{2}+\frac{29}{6}a-\frac{29}{3}}{29a^{2}}
Tāpirihia te -\frac{5017}{432} ki te \frac{841}{432}, ka -\frac{29}{3}.