Aromātai
-\frac{5}{4}=-1.25
Tauwehe
-\frac{5}{4} = -1\frac{1}{4} = -1.25
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{28}-\frac{14+5}{14}
Whakareatia te 1 ki te 14, ka 14.
\frac{3}{28}-\frac{19}{14}
Tāpirihia te 14 ki te 5, ka 19.
\frac{3}{28}-\frac{38}{28}
Ko te maha noa iti rawa atu o 28 me 14 ko 28. Me tahuri \frac{3}{28} me \frac{19}{14} ki te hautau me te tautūnga 28.
\frac{3-38}{28}
Tā te mea he rite te tauraro o \frac{3}{28} me \frac{38}{28}, me tango rāua mā te tango i ō raua taurunga.
\frac{-35}{28}
Tangohia te 38 i te 3, ka -35.
-\frac{5}{4}
Whakahekea te hautanga \frac{-35}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}