Aromātai
\frac{25}{121}\approx 0.20661157
Tauwehe
\frac{5 ^ {2}}{11 ^ {2}} = 0.2066115702479339
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{22}\left(\frac{198}{99}-\frac{16}{99}\right)\times \frac{3}{2}-\frac{\frac{1}{3}}{\left(\frac{11}{6}\right)^{2}}-\frac{17}{11}\times \frac{1}{22}
Me tahuri te 2 ki te hautau \frac{198}{99}.
\frac{3}{22}\times \frac{198-16}{99}\times \frac{3}{2}-\frac{\frac{1}{3}}{\left(\frac{11}{6}\right)^{2}}-\frac{17}{11}\times \frac{1}{22}
Tā te mea he rite te tauraro o \frac{198}{99} me \frac{16}{99}, me tango rāua mā te tango i ō raua taurunga.
\frac{3}{22}\times \frac{182}{99}\times \frac{3}{2}-\frac{\frac{1}{3}}{\left(\frac{11}{6}\right)^{2}}-\frac{17}{11}\times \frac{1}{22}
Tangohia te 16 i te 198, ka 182.
\frac{3\times 182}{22\times 99}\times \frac{3}{2}-\frac{\frac{1}{3}}{\left(\frac{11}{6}\right)^{2}}-\frac{17}{11}\times \frac{1}{22}
Me whakarea te \frac{3}{22} ki te \frac{182}{99} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{546}{2178}\times \frac{3}{2}-\frac{\frac{1}{3}}{\left(\frac{11}{6}\right)^{2}}-\frac{17}{11}\times \frac{1}{22}
Mahia ngā whakarea i roto i te hautanga \frac{3\times 182}{22\times 99}.
\frac{91}{363}\times \frac{3}{2}-\frac{\frac{1}{3}}{\left(\frac{11}{6}\right)^{2}}-\frac{17}{11}\times \frac{1}{22}
Whakahekea te hautanga \frac{546}{2178} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{91\times 3}{363\times 2}-\frac{\frac{1}{3}}{\left(\frac{11}{6}\right)^{2}}-\frac{17}{11}\times \frac{1}{22}
Me whakarea te \frac{91}{363} ki te \frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{273}{726}-\frac{\frac{1}{3}}{\left(\frac{11}{6}\right)^{2}}-\frac{17}{11}\times \frac{1}{22}
Mahia ngā whakarea i roto i te hautanga \frac{91\times 3}{363\times 2}.
\frac{91}{242}-\frac{\frac{1}{3}}{\left(\frac{11}{6}\right)^{2}}-\frac{17}{11}\times \frac{1}{22}
Whakahekea te hautanga \frac{273}{726} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{91}{242}-\frac{\frac{1}{3}}{\frac{121}{36}}-\frac{17}{11}\times \frac{1}{22}
Tātaihia te \frac{11}{6} mā te pū o 2, kia riro ko \frac{121}{36}.
\frac{91}{242}-\frac{1}{3}\times \frac{36}{121}-\frac{17}{11}\times \frac{1}{22}
Whakawehe \frac{1}{3} ki te \frac{121}{36} mā te whakarea \frac{1}{3} ki te tau huripoki o \frac{121}{36}.
\frac{91}{242}-\frac{1\times 36}{3\times 121}-\frac{17}{11}\times \frac{1}{22}
Me whakarea te \frac{1}{3} ki te \frac{36}{121} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{91}{242}-\frac{36}{363}-\frac{17}{11}\times \frac{1}{22}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 36}{3\times 121}.
\frac{91}{242}-\frac{12}{121}-\frac{17}{11}\times \frac{1}{22}
Whakahekea te hautanga \frac{36}{363} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{91}{242}-\frac{24}{242}-\frac{17}{11}\times \frac{1}{22}
Ko te maha noa iti rawa atu o 242 me 121 ko 242. Me tahuri \frac{91}{242} me \frac{12}{121} ki te hautau me te tautūnga 242.
\frac{91-24}{242}-\frac{17}{11}\times \frac{1}{22}
Tā te mea he rite te tauraro o \frac{91}{242} me \frac{24}{242}, me tango rāua mā te tango i ō raua taurunga.
\frac{67}{242}-\frac{17}{11}\times \frac{1}{22}
Tangohia te 24 i te 91, ka 67.
\frac{67}{242}-\frac{17\times 1}{11\times 22}
Me whakarea te \frac{17}{11} ki te \frac{1}{22} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{67}{242}-\frac{17}{242}
Mahia ngā whakarea i roto i te hautanga \frac{17\times 1}{11\times 22}.
\frac{67-17}{242}
Tā te mea he rite te tauraro o \frac{67}{242} me \frac{17}{242}, me tango rāua mā te tango i ō raua taurunga.
\frac{50}{242}
Tangohia te 17 i te 67, ka 50.
\frac{25}{121}
Whakahekea te hautanga \frac{50}{242} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}