Whakaoti mō x
x=3
x=\frac{1}{2}=0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+1\right)\times 3+\left(2x-2\right)\times 3=\left(2x+2\right)x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2\left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x-2,x+1,x-1.
3x+3+\left(2x-2\right)\times 3=\left(2x+2\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 3.
3x+3+6x-6=\left(2x+2\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-2 ki te 3.
9x+3-6=\left(2x+2\right)x
Pahekotia te 3x me 6x, ka 9x.
9x-3=\left(2x+2\right)x
Tangohia te 6 i te 3, ka -3.
9x-3=2x^{2}+2x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+2 ki te x.
9x-3-2x^{2}=2x
Tangohia te 2x^{2} mai i ngā taha e rua.
9x-3-2x^{2}-2x=0
Tangohia te 2x mai i ngā taha e rua.
7x-3-2x^{2}=0
Pahekotia te 9x me -2x, ka 7x.
-2x^{2}+7x-3=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=7 ab=-2\left(-3\right)=6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -2x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,6 2,3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 6.
1+6=7 2+3=5
Tātaihia te tapeke mō ia takirua.
a=6 b=1
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(-2x^{2}+6x\right)+\left(x-3\right)
Tuhia anō te -2x^{2}+7x-3 hei \left(-2x^{2}+6x\right)+\left(x-3\right).
2x\left(-x+3\right)-\left(-x+3\right)
Tauwehea te 2x i te tuatahi me te -1 i te rōpū tuarua.
\left(-x+3\right)\left(2x-1\right)
Whakatauwehea atu te kīanga pātahi -x+3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te -x+3=0 me te 2x-1=0.
\left(x+1\right)\times 3+\left(2x-2\right)\times 3=\left(2x+2\right)x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2\left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x-2,x+1,x-1.
3x+3+\left(2x-2\right)\times 3=\left(2x+2\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 3.
3x+3+6x-6=\left(2x+2\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-2 ki te 3.
9x+3-6=\left(2x+2\right)x
Pahekotia te 3x me 6x, ka 9x.
9x-3=\left(2x+2\right)x
Tangohia te 6 i te 3, ka -3.
9x-3=2x^{2}+2x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+2 ki te x.
9x-3-2x^{2}=2x
Tangohia te 2x^{2} mai i ngā taha e rua.
9x-3-2x^{2}-2x=0
Tangohia te 2x mai i ngā taha e rua.
7x-3-2x^{2}=0
Pahekotia te 9x me -2x, ka 7x.
-2x^{2}+7x-3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-7±\sqrt{7^{2}-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 7 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
Pūrua 7.
x=\frac{-7±\sqrt{49+8\left(-3\right)}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-7±\sqrt{49-24}}{2\left(-2\right)}
Whakareatia 8 ki te -3.
x=\frac{-7±\sqrt{25}}{2\left(-2\right)}
Tāpiri 49 ki te -24.
x=\frac{-7±5}{2\left(-2\right)}
Tuhia te pūtakerua o te 25.
x=\frac{-7±5}{-4}
Whakareatia 2 ki te -2.
x=-\frac{2}{-4}
Nā, me whakaoti te whārite x=\frac{-7±5}{-4} ina he tāpiri te ±. Tāpiri -7 ki te 5.
x=\frac{1}{2}
Whakahekea te hautanga \frac{-2}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{12}{-4}
Nā, me whakaoti te whārite x=\frac{-7±5}{-4} ina he tango te ±. Tango 5 mai i -7.
x=3
Whakawehe -12 ki te -4.
x=\frac{1}{2} x=3
Kua oti te whārite te whakatau.
\left(x+1\right)\times 3+\left(2x-2\right)\times 3=\left(2x+2\right)x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2\left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x-2,x+1,x-1.
3x+3+\left(2x-2\right)\times 3=\left(2x+2\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 3.
3x+3+6x-6=\left(2x+2\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-2 ki te 3.
9x+3-6=\left(2x+2\right)x
Pahekotia te 3x me 6x, ka 9x.
9x-3=\left(2x+2\right)x
Tangohia te 6 i te 3, ka -3.
9x-3=2x^{2}+2x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+2 ki te x.
9x-3-2x^{2}=2x
Tangohia te 2x^{2} mai i ngā taha e rua.
9x-3-2x^{2}-2x=0
Tangohia te 2x mai i ngā taha e rua.
7x-3-2x^{2}=0
Pahekotia te 9x me -2x, ka 7x.
7x-2x^{2}=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-2x^{2}+7x=3
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2x^{2}+7x}{-2}=\frac{3}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{7}{-2}x=\frac{3}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-\frac{7}{2}x=\frac{3}{-2}
Whakawehe 7 ki te -2.
x^{2}-\frac{7}{2}x=-\frac{3}{2}
Whakawehe 3 ki te -2.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{7}{4}\right)^{2}
Whakawehea te -\frac{7}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{4}. Nā, tāpiria te pūrua o te -\frac{7}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{7}{2}x+\frac{49}{16}=-\frac{3}{2}+\frac{49}{16}
Pūruatia -\frac{7}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{25}{16}
Tāpiri -\frac{3}{2} ki te \frac{49}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{7}{4}\right)^{2}=\frac{25}{16}
Tauwehea x^{2}-\frac{7}{2}x+\frac{49}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{4}=\frac{5}{4} x-\frac{7}{4}=-\frac{5}{4}
Whakarūnātia.
x=3 x=\frac{1}{2}
Me tāpiri \frac{7}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}