Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)}-\frac{2x-1}{\left(2x-1\right)\left(x+2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2x-1 me x+2 ko \left(2x-1\right)\left(x+2\right). Whakareatia \frac{3}{2x-1} ki te \frac{x+2}{x+2}. Whakareatia \frac{1}{x+2} ki te \frac{2x-1}{2x-1}.
\frac{3\left(x+2\right)-\left(2x-1\right)}{\left(2x-1\right)\left(x+2\right)}
Tā te mea he rite te tauraro o \frac{3\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)} me \frac{2x-1}{\left(2x-1\right)\left(x+2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{3x+6-2x+1}{\left(2x-1\right)\left(x+2\right)}
Mahia ngā whakarea i roto o 3\left(x+2\right)-\left(2x-1\right).
\frac{x+7}{\left(2x-1\right)\left(x+2\right)}
Whakakotahitia ngā kupu rite i 3x+6-2x+1.
\frac{x+7}{2x^{2}+3x-2}
Whakarohaina te \left(2x-1\right)\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)}-\frac{2x-1}{\left(2x-1\right)\left(x+2\right)})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2x-1 me x+2 ko \left(2x-1\right)\left(x+2\right). Whakareatia \frac{3}{2x-1} ki te \frac{x+2}{x+2}. Whakareatia \frac{1}{x+2} ki te \frac{2x-1}{2x-1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+2\right)-\left(2x-1\right)}{\left(2x-1\right)\left(x+2\right)})
Tā te mea he rite te tauraro o \frac{3\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)} me \frac{2x-1}{\left(2x-1\right)\left(x+2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x+6-2x+1}{\left(2x-1\right)\left(x+2\right)})
Mahia ngā whakarea i roto o 3\left(x+2\right)-\left(2x-1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{\left(2x-1\right)\left(x+2\right)})
Whakakotahitia ngā kupu rite i 3x+6-2x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{2x^{2}+4x-x-2})
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2x-1 ki ia tau o x+2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{2x^{2}+3x-2})
Pahekotia te 4x me -x, ka 3x.
\frac{\left(2x^{2}+3x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+7)-\left(x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+3x^{1}-2)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(2x^{2}+3x^{1}-2\right)x^{1-1}-\left(x^{1}+7\right)\left(2\times 2x^{2-1}+3x^{1-1}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(2x^{2}+3x^{1}-2\right)x^{0}-\left(x^{1}+7\right)\left(4x^{1}+3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Whakarūnātia.
\frac{2x^{2}x^{0}+3x^{1}x^{0}-2x^{0}-\left(x^{1}+7\right)\left(4x^{1}+3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Whakareatia 2x^{2}+3x^{1}-2 ki te x^{0}.
\frac{2x^{2}x^{0}+3x^{1}x^{0}-2x^{0}-\left(x^{1}\times 4x^{1}+x^{1}\times 3x^{0}+7\times 4x^{1}+7\times 3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Whakareatia x^{1}+7 ki te 4x^{1}+3x^{0}.
\frac{2x^{2}+3x^{1}-2x^{0}-\left(4x^{1+1}+3x^{1}+7\times 4x^{1}+7\times 3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{2x^{2}+3x^{1}-2x^{0}-\left(4x^{2}+3x^{1}+28x^{1}+21x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Whakarūnātia.
\frac{-2x^{2}-28x^{1}-23x^{0}}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-2x^{2}-28x-23x^{0}}{\left(2x^{2}+3x-2\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-2x^{2}-28x-23}{\left(2x^{2}+3x-2\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.