Whakaoti mō x
x=0
Graph
Pātaitai
Linear Equation
\frac { 3 } { 2 x + 1 } - \frac { x + 1 } { 2 x + 1 } = \frac { x + 2 } { 2 x + 1 }
Tohaina
Kua tāruatia ki te papatopenga
3-\left(x+1\right)=x+2
Tē taea kia ōrite te tāupe x ki -\frac{1}{2} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2x+1.
3-x-1=x+2
Hei kimi i te tauaro o x+1, kimihia te tauaro o ia taurangi.
2-x=x+2
Tangohia te 1 i te 3, ka 2.
2-x-x=2
Tangohia te x mai i ngā taha e rua.
2-2x=2
Pahekotia te -x me -x, ka -2x.
-2x=2-2
Tangohia te 2 mai i ngā taha e rua.
-2x=0
Tangohia te 2 i te 2, ka 0.
x=0
He ōrite te hua o ngā tau e rua ki 0 ina 0 tētahi o rāua te iti rawa. Tātemea kāore te -2 e ōrite ki 0, me ōrite pū te x ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}