Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(2x-1\right)\times 3=\left(2x+1\right)\times 2-\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{1}{2},\frac{1}{2} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(2x-1\right)\left(2x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x+1,2x-1,4x^{2}-1.
6x-3=\left(2x+1\right)\times 2-\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-1 ki te 3.
6x-3=4x+2-\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+1 ki te 2.
6x-3=4x+2-x-1
Hei kimi i te tauaro o x+1, kimihia te tauaro o ia taurangi.
6x-3=3x+2-1
Pahekotia te 4x me -x, ka 3x.
6x-3=3x+1
Tangohia te 1 i te 2, ka 1.
6x-3-3x=1
Tangohia te 3x mai i ngā taha e rua.
3x-3=1
Pahekotia te 6x me -3x, ka 3x.
3x=1+3
Me tāpiri te 3 ki ngā taha e rua.
3x=4
Tāpirihia te 1 ki te 3, ka 4.
x=\frac{4}{3}
Whakawehea ngā taha e rua ki te 3.