Whakaoti mō x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(2x-1\right)\times 3=\left(2x+1\right)\times 2-\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{1}{2},\frac{1}{2} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(2x-1\right)\left(2x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x+1,2x-1,4x^{2}-1.
6x-3=\left(2x+1\right)\times 2-\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-1 ki te 3.
6x-3=4x+2-\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+1 ki te 2.
6x-3=4x+2-x-1
Hei kimi i te tauaro o x+1, kimihia te tauaro o ia taurangi.
6x-3=3x+2-1
Pahekotia te 4x me -x, ka 3x.
6x-3=3x+1
Tangohia te 1 i te 2, ka 1.
6x-3-3x=1
Tangohia te 3x mai i ngā taha e rua.
3x-3=1
Pahekotia te 6x me -3x, ka 3x.
3x=1+3
Me tāpiri te 3 ki ngā taha e rua.
3x=4
Tāpirihia te 1 ki te 3, ka 4.
x=\frac{4}{3}
Whakawehea ngā taha e rua ki te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}