Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\frac{4}{\sqrt{3}+1}
Whakangāwaritia te tauraro o \frac{3}{2-\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 2+\sqrt{3}.
\frac{3\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}+\frac{4}{\sqrt{3}+1}
Whakaarohia te \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(2+\sqrt{3}\right)}{4-3}+\frac{4}{\sqrt{3}+1}
Pūrua 2. Pūrua \sqrt{3}.
\frac{3\left(2+\sqrt{3}\right)}{1}+\frac{4}{\sqrt{3}+1}
Tangohia te 3 i te 4, ka 1.
3\left(2+\sqrt{3}\right)+\frac{4}{\sqrt{3}+1}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
3\left(2+\sqrt{3}\right)+\frac{4\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
Whakangāwaritia te tauraro o \frac{4}{\sqrt{3}+1} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}-1.
3\left(2+\sqrt{3}\right)+\frac{4\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Whakaarohia te \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3\left(2+\sqrt{3}\right)+\frac{4\left(\sqrt{3}-1\right)}{3-1}
Pūrua \sqrt{3}. Pūrua 1.
3\left(2+\sqrt{3}\right)+\frac{4\left(\sqrt{3}-1\right)}{2}
Tangohia te 1 i te 3, ka 2.
3\left(2+\sqrt{3}\right)+2\left(\sqrt{3}-1\right)
Whakawehea te 4\left(\sqrt{3}-1\right) ki te 2, kia riro ko 2\left(\sqrt{3}-1\right).
6+3\sqrt{3}+2\left(\sqrt{3}-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2+\sqrt{3}.
6+3\sqrt{3}+2\sqrt{3}-2
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te \sqrt{3}-1.
6+5\sqrt{3}-2
Pahekotia te 3\sqrt{3} me 2\sqrt{3}, ka 5\sqrt{3}.
4+5\sqrt{3}
Tangohia te 2 i te 6, ka 4.