Aromātai
5\sqrt{3}+4\approx 12.660254038
Tohaina
Kua tāruatia ki te papatopenga
\frac{3\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\frac{4}{\sqrt{3}+1}
Whakangāwaritia te tauraro o \frac{3}{2-\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 2+\sqrt{3}.
\frac{3\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}+\frac{4}{\sqrt{3}+1}
Whakaarohia te \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(2+\sqrt{3}\right)}{4-3}+\frac{4}{\sqrt{3}+1}
Pūrua 2. Pūrua \sqrt{3}.
\frac{3\left(2+\sqrt{3}\right)}{1}+\frac{4}{\sqrt{3}+1}
Tangohia te 3 i te 4, ka 1.
3\left(2+\sqrt{3}\right)+\frac{4}{\sqrt{3}+1}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
3\left(2+\sqrt{3}\right)+\frac{4\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
Whakangāwaritia te tauraro o \frac{4}{\sqrt{3}+1} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}-1.
3\left(2+\sqrt{3}\right)+\frac{4\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Whakaarohia te \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3\left(2+\sqrt{3}\right)+\frac{4\left(\sqrt{3}-1\right)}{3-1}
Pūrua \sqrt{3}. Pūrua 1.
3\left(2+\sqrt{3}\right)+\frac{4\left(\sqrt{3}-1\right)}{2}
Tangohia te 1 i te 3, ka 2.
3\left(2+\sqrt{3}\right)+2\left(\sqrt{3}-1\right)
Whakawehea te 4\left(\sqrt{3}-1\right) ki te 2, kia riro ko 2\left(\sqrt{3}-1\right).
6+3\sqrt{3}+2\left(\sqrt{3}-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2+\sqrt{3}.
6+3\sqrt{3}+2\sqrt{3}-2
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te \sqrt{3}-1.
6+5\sqrt{3}-2
Pahekotia te 3\sqrt{3} me 2\sqrt{3}, ka 5\sqrt{3}.
4+5\sqrt{3}
Tangohia te 2 i te 6, ka 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}