Whakaoti mō y
y=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{2}y+\frac{3}{2}\left(-5\right)+10=2y
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{2} ki te y-5.
\frac{3}{2}y+\frac{3\left(-5\right)}{2}+10=2y
Tuhia te \frac{3}{2}\left(-5\right) hei hautanga kotahi.
\frac{3}{2}y+\frac{-15}{2}+10=2y
Whakareatia te 3 ki te -5, ka -15.
\frac{3}{2}y-\frac{15}{2}+10=2y
Ka taea te hautanga \frac{-15}{2} te tuhi anō ko -\frac{15}{2} mā te tango i te tohu tōraro.
\frac{3}{2}y-\frac{15}{2}+\frac{20}{2}=2y
Me tahuri te 10 ki te hautau \frac{20}{2}.
\frac{3}{2}y+\frac{-15+20}{2}=2y
Tā te mea he rite te tauraro o -\frac{15}{2} me \frac{20}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3}{2}y+\frac{5}{2}=2y
Tāpirihia te -15 ki te 20, ka 5.
\frac{3}{2}y+\frac{5}{2}-2y=0
Tangohia te 2y mai i ngā taha e rua.
-\frac{1}{2}y+\frac{5}{2}=0
Pahekotia te \frac{3}{2}y me -2y, ka -\frac{1}{2}y.
-\frac{1}{2}y=-\frac{5}{2}
Tangohia te \frac{5}{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
y=-\frac{5}{2}\left(-2\right)
Me whakarea ngā taha e rua ki te -2, te tau utu o -\frac{1}{2}.
y=\frac{-5\left(-2\right)}{2}
Tuhia te -\frac{5}{2}\left(-2\right) hei hautanga kotahi.
y=\frac{10}{2}
Whakareatia te -5 ki te -2, ka 10.
y=5
Whakawehea te 10 ki te 2, kia riro ko 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}