Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3}{2}\times 2\sqrt{5}\sqrt{15}\left(-\frac{1}{3}\right)\sqrt{48}
Tauwehea te 20=2^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 5} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{5}. Tuhia te pūtakerua o te 2^{2}.
3\sqrt{5}\sqrt{15}\left(-\frac{1}{3}\right)\sqrt{48}
Me whakakore te 2 me te 2.
-\sqrt{5}\sqrt{15}\sqrt{48}
Me whakakore te 3 me te 3.
-\sqrt{5}\sqrt{15}\times 4\sqrt{3}
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
-4\sqrt{5}\sqrt{15}\sqrt{3}
Whakareatia te -1 ki te 4, ka -4.
-4\sqrt{5}\sqrt{5}\sqrt{3}\sqrt{3}
Tauwehea te 15=5\times 3. Tuhia anō te pūtake rua o te hua \sqrt{5\times 3} hei hua o ngā pūtake rua \sqrt{5}\sqrt{3}.
-4\times 5\sqrt{3}\sqrt{3}
Whakareatia te \sqrt{5} ki te \sqrt{5}, ka 5.
-4\times 5\times 3
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
-20\times 3
Whakareatia te -4 ki te 5, ka -20.
-60
Whakareatia te -20 ki te 3, ka -60.