Aromātai
-\frac{9}{8}=-1.125
Tauwehe
-\frac{9}{8} = -1\frac{1}{8} = -1.125
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{2}\times \frac{\frac{1}{4}-\frac{6}{4}}{\frac{3}{2}+\frac{1}{6}}
Ko te maha noa iti rawa atu o 4 me 2 ko 4. Me tahuri \frac{1}{4} me \frac{3}{2} ki te hautau me te tautūnga 4.
\frac{3}{2}\times \frac{\frac{1-6}{4}}{\frac{3}{2}+\frac{1}{6}}
Tā te mea he rite te tauraro o \frac{1}{4} me \frac{6}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{3}{2}\times \frac{-\frac{5}{4}}{\frac{3}{2}+\frac{1}{6}}
Tangohia te 6 i te 1, ka -5.
\frac{3}{2}\times \frac{-\frac{5}{4}}{\frac{9}{6}+\frac{1}{6}}
Ko te maha noa iti rawa atu o 2 me 6 ko 6. Me tahuri \frac{3}{2} me \frac{1}{6} ki te hautau me te tautūnga 6.
\frac{3}{2}\times \frac{-\frac{5}{4}}{\frac{9+1}{6}}
Tā te mea he rite te tauraro o \frac{9}{6} me \frac{1}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3}{2}\times \frac{-\frac{5}{4}}{\frac{10}{6}}
Tāpirihia te 9 ki te 1, ka 10.
\frac{3}{2}\times \frac{-\frac{5}{4}}{\frac{5}{3}}
Whakahekea te hautanga \frac{10}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{3}{2}\left(-\frac{5}{4}\right)\times \frac{3}{5}
Whakawehe -\frac{5}{4} ki te \frac{5}{3} mā te whakarea -\frac{5}{4} ki te tau huripoki o \frac{5}{3}.
\frac{3}{2}\times \frac{-5\times 3}{4\times 5}
Me whakarea te -\frac{5}{4} ki te \frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3}{2}\times \frac{-15}{20}
Mahia ngā whakarea i roto i te hautanga \frac{-5\times 3}{4\times 5}.
\frac{3}{2}\left(-\frac{3}{4}\right)
Whakahekea te hautanga \frac{-15}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{3\left(-3\right)}{2\times 4}
Me whakarea te \frac{3}{2} ki te -\frac{3}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-9}{8}
Mahia ngā whakarea i roto i te hautanga \frac{3\left(-3\right)}{2\times 4}.
-\frac{9}{8}
Ka taea te hautanga \frac{-9}{8} te tuhi anō ko -\frac{9}{8} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}