Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

18\left(\frac{2}{3}\left(\frac{x}{4}-1\right)-2\right)-12x=24
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3,4.
18\left(\frac{2}{3}\times \frac{x}{4}+\frac{2}{3}\left(-1\right)-2\right)-12x=24
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te \frac{x}{4}-1.
18\left(\frac{2x}{3\times 4}+\frac{2}{3}\left(-1\right)-2\right)-12x=24
Me whakarea te \frac{2}{3} ki te \frac{x}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
18\left(\frac{x}{2\times 3}+\frac{2}{3}\left(-1\right)-2\right)-12x=24
Me whakakore tahi te 2 i te taurunga me te tauraro.
18\left(\frac{x}{2\times 3}-\frac{2}{3}-2\right)-12x=24
Whakareatia te \frac{2}{3} ki te -1, ka -\frac{2}{3}.
18\left(\frac{x}{2\times 3}-\frac{2\times 2}{2\times 3}-2\right)-12x=24
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2\times 3 me 3 ko 2\times 3. Whakareatia \frac{2}{3} ki te \frac{2}{2}.
18\left(\frac{x-2\times 2}{2\times 3}-2\right)-12x=24
Tā te mea he rite te tauraro o \frac{x}{2\times 3} me \frac{2\times 2}{2\times 3}, me tango rāua mā te tango i ō raua taurunga.
18\left(\frac{x-4}{2\times 3}-2\right)-12x=24
Mahia ngā whakarea i roto o x-2\times 2.
18\left(\frac{x-4}{6}-2\right)-12x=24
Whakareatia te 2 ki te 3, ka 6.
18\times \frac{x-4}{6}-36-12x=24
Whakamahia te āhuatanga tohatoha hei whakarea te 18 ki te \frac{x-4}{6}-2.
3\left(x-4\right)-36-12x=24
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 18 me te 6.
3x-12-36-12x=24
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-4.
3x-48-12x=24
Tangohia te 36 i te -12, ka -48.
-9x-48=24
Pahekotia te 3x me -12x, ka -9x.
-9x=24+48
Me tāpiri te 48 ki ngā taha e rua.
-9x=72
Tāpirihia te 24 ki te 48, ka 72.
x=\frac{72}{-9}
Whakawehea ngā taha e rua ki te -9.
x=-8
Whakawehea te 72 ki te -9, kia riro ko -8.