Aromātai
-\frac{4}{15}\approx -0.266666667
Tauwehe
-\frac{4}{15} = -0.26666666666666666
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{2}+\frac{1\times 1}{3\times 2}-\frac{\frac{4}{5}}{3}-\frac{5}{3}
Me whakarea te \frac{1}{3} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3}{2}+\frac{1}{6}-\frac{\frac{4}{5}}{3}-\frac{5}{3}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 1}{3\times 2}.
\frac{9}{6}+\frac{1}{6}-\frac{\frac{4}{5}}{3}-\frac{5}{3}
Ko te maha noa iti rawa atu o 2 me 6 ko 6. Me tahuri \frac{3}{2} me \frac{1}{6} ki te hautau me te tautūnga 6.
\frac{9+1}{6}-\frac{\frac{4}{5}}{3}-\frac{5}{3}
Tā te mea he rite te tauraro o \frac{9}{6} me \frac{1}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{10}{6}-\frac{\frac{4}{5}}{3}-\frac{5}{3}
Tāpirihia te 9 ki te 1, ka 10.
\frac{5}{3}-\frac{\frac{4}{5}}{3}-\frac{5}{3}
Whakahekea te hautanga \frac{10}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{5}{3}-\frac{4}{5\times 3}-\frac{5}{3}
Tuhia te \frac{\frac{4}{5}}{3} hei hautanga kotahi.
\frac{5}{3}-\frac{4}{15}-\frac{5}{3}
Whakareatia te 5 ki te 3, ka 15.
\frac{25}{15}-\frac{4}{15}-\frac{5}{3}
Ko te maha noa iti rawa atu o 3 me 15 ko 15. Me tahuri \frac{5}{3} me \frac{4}{15} ki te hautau me te tautūnga 15.
\frac{25-4}{15}-\frac{5}{3}
Tā te mea he rite te tauraro o \frac{25}{15} me \frac{4}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{21}{15}-\frac{5}{3}
Tangohia te 4 i te 25, ka 21.
\frac{7}{5}-\frac{5}{3}
Whakahekea te hautanga \frac{21}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{21}{15}-\frac{25}{15}
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri \frac{7}{5} me \frac{5}{3} ki te hautau me te tautūnga 15.
\frac{21-25}{15}
Tā te mea he rite te tauraro o \frac{21}{15} me \frac{25}{15}, me tango rāua mā te tango i ō raua taurunga.
-\frac{4}{15}
Tangohia te 25 i te 21, ka -4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}