Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)}+\frac{-x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{28}{1-x^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 1-x me 1+x ko \left(x+1\right)\left(-x+1\right). Whakareatia \frac{3}{1-x} ki te \frac{x+1}{x+1}. Whakareatia \frac{1}{1+x} ki te \frac{-x+1}{-x+1}.
\frac{3\left(x+1\right)-x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{28}{1-x^{2}}
Tā te mea he rite te tauraro o \frac{3\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)} me \frac{-x+1}{\left(x+1\right)\left(-x+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3x+3-x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{28}{1-x^{2}}
Mahia ngā whakarea i roto o 3\left(x+1\right)-x+1.
\frac{2x+4}{\left(x+1\right)\left(-x+1\right)}-\frac{28}{1-x^{2}}
Whakakotahitia ngā kupu rite i 3x+3-x+1.
\frac{2x+4}{\left(x+1\right)\left(-x+1\right)}-\frac{28}{\left(x-1\right)\left(-x-1\right)}
Tauwehea te 1-x^{2}.
\frac{-\left(2x+4\right)}{\left(x-1\right)\left(x+1\right)}-\frac{28\left(-1\right)}{\left(x-1\right)\left(x+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x+1\right)\left(-x+1\right) me \left(x-1\right)\left(-x-1\right) ko \left(x-1\right)\left(x+1\right). Whakareatia \frac{2x+4}{\left(x+1\right)\left(-x+1\right)} ki te \frac{-1}{-1}. Whakareatia \frac{28}{\left(x-1\right)\left(-x-1\right)} ki te \frac{-1}{-1}.
\frac{-\left(2x+4\right)-28\left(-1\right)}{\left(x-1\right)\left(x+1\right)}
Tā te mea he rite te tauraro o \frac{-\left(2x+4\right)}{\left(x-1\right)\left(x+1\right)} me \frac{28\left(-1\right)}{\left(x-1\right)\left(x+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{-2x-4+28}{\left(x-1\right)\left(x+1\right)}
Mahia ngā whakarea i roto o -\left(2x+4\right)-28\left(-1\right).
\frac{-2x+24}{\left(x-1\right)\left(x+1\right)}
Whakakotahitia ngā kupu rite i -2x-4+28.
\frac{-2x+24}{x^{2}-1}
Whakarohaina te \left(x-1\right)\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)}+\frac{-x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{28}{1-x^{2}})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 1-x me 1+x ko \left(x+1\right)\left(-x+1\right). Whakareatia \frac{3}{1-x} ki te \frac{x+1}{x+1}. Whakareatia \frac{1}{1+x} ki te \frac{-x+1}{-x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+1\right)-x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{28}{1-x^{2}})
Tā te mea he rite te tauraro o \frac{3\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)} me \frac{-x+1}{\left(x+1\right)\left(-x+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x+3-x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{28}{1-x^{2}})
Mahia ngā whakarea i roto o 3\left(x+1\right)-x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+4}{\left(x+1\right)\left(-x+1\right)}-\frac{28}{1-x^{2}})
Whakakotahitia ngā kupu rite i 3x+3-x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+4}{\left(x+1\right)\left(-x+1\right)}-\frac{28}{\left(x-1\right)\left(-x-1\right)})
Tauwehea te 1-x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\left(2x+4\right)}{\left(x-1\right)\left(x+1\right)}-\frac{28\left(-1\right)}{\left(x-1\right)\left(x+1\right)})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x+1\right)\left(-x+1\right) me \left(x-1\right)\left(-x-1\right) ko \left(x-1\right)\left(x+1\right). Whakareatia \frac{2x+4}{\left(x+1\right)\left(-x+1\right)} ki te \frac{-1}{-1}. Whakareatia \frac{28}{\left(x-1\right)\left(-x-1\right)} ki te \frac{-1}{-1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\left(2x+4\right)-28\left(-1\right)}{\left(x-1\right)\left(x+1\right)})
Tā te mea he rite te tauraro o \frac{-\left(2x+4\right)}{\left(x-1\right)\left(x+1\right)} me \frac{28\left(-1\right)}{\left(x-1\right)\left(x+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2x-4+28}{\left(x-1\right)\left(x+1\right)})
Mahia ngā whakarea i roto o -\left(2x+4\right)-28\left(-1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2x+24}{\left(x-1\right)\left(x+1\right)})
Whakakotahitia ngā kupu rite i -2x-4+28.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2x+24}{x^{2}-1})
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
\frac{\left(x^{2}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(-2x^{1}+24)-\left(-2x^{1}+24\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-1)}{\left(x^{2}-1\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{2}-1\right)\left(-2\right)x^{1-1}-\left(-2x^{1}+24\right)\times 2x^{2-1}}{\left(x^{2}-1\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{2}-1\right)\left(-2\right)x^{0}-\left(-2x^{1}+24\right)\times 2x^{1}}{\left(x^{2}-1\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{2}\left(-2\right)x^{0}-\left(-2x^{0}\right)-\left(-2x^{1}\times 2x^{1}+24\times 2x^{1}\right)}{\left(x^{2}-1\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{-2x^{2}-\left(-2x^{0}\right)-\left(-2\times 2x^{1+1}+24\times 2x^{1}\right)}{\left(x^{2}-1\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{-2x^{2}+2x^{0}-\left(-4x^{2}+48x^{1}\right)}{\left(x^{2}-1\right)^{2}}
Mahia ngā tātaitanga.
\frac{-2x^{2}+2x^{0}-\left(-4x^{2}\right)-48x^{1}}{\left(x^{2}-1\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(-2-\left(-4\right)\right)x^{2}+2x^{0}-48x^{1}}{\left(x^{2}-1\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{2x^{2}+2x^{0}-48x^{1}}{\left(x^{2}-1\right)^{2}}
Tango -4 mai i -2.
\frac{2x^{2}+2x^{0}-48x}{\left(x^{2}-1\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{2x^{2}+2\times 1-48x}{\left(x^{2}-1\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{2x^{2}+2-48x}{\left(x^{2}-1\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.