Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3}{\left(-x+1\right)\left(2x+1\right)}+\frac{x}{x-1}
Tauwehea te 1+x-2x^{2}.
\frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)}+\frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(-x+1\right)\left(2x+1\right) me x-1 ko \left(x-1\right)\left(2x+1\right). Whakareatia \frac{3}{\left(-x+1\right)\left(2x+1\right)} ki te \frac{-1}{-1}. Whakareatia \frac{x}{x-1} ki te \frac{2x+1}{2x+1}.
\frac{3\left(-1\right)+x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)}
Tā te mea he rite te tauraro o \frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)} me \frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)}
Mahia ngā whakarea i roto o 3\left(-1\right)+x\left(2x+1\right).
\frac{\left(x-1\right)\left(2x+3\right)}{\left(x-1\right)\left(2x+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)}.
\frac{2x+3}{2x+1}
Me whakakore tahi te x-1 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{\left(-x+1\right)\left(2x+1\right)}+\frac{x}{x-1})
Tauwehea te 1+x-2x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)}+\frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(-x+1\right)\left(2x+1\right) me x-1 ko \left(x-1\right)\left(2x+1\right). Whakareatia \frac{3}{\left(-x+1\right)\left(2x+1\right)} ki te \frac{-1}{-1}. Whakareatia \frac{x}{x-1} ki te \frac{2x+1}{2x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(-1\right)+x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)})
Tā te mea he rite te tauraro o \frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)} me \frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)})
Mahia ngā whakarea i roto o 3\left(-1\right)+x\left(2x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-1\right)\left(2x+3\right)}{\left(x-1\right)\left(2x+1\right)})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+3}{2x+1})
Me whakakore tahi te x-1 i te taurunga me te tauraro.
\frac{\left(2x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+3)-\left(2x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+1)}{\left(2x^{1}+1\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(2x^{1}+1\right)\times 2x^{1-1}-\left(2x^{1}+3\right)\times 2x^{1-1}}{\left(2x^{1}+1\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(2x^{1}+1\right)\times 2x^{0}-\left(2x^{1}+3\right)\times 2x^{0}}{\left(2x^{1}+1\right)^{2}}
Mahia ngā tātaitanga.
\frac{2x^{1}\times 2x^{0}+2x^{0}-\left(2x^{1}\times 2x^{0}+3\times 2x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{2\times 2x^{1}+2x^{0}-\left(2\times 2x^{1}+3\times 2x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{4x^{1}+2x^{0}-\left(4x^{1}+6x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
Mahia ngā tātaitanga.
\frac{4x^{1}+2x^{0}-4x^{1}-6x^{0}}{\left(2x^{1}+1\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(4-4\right)x^{1}+\left(2-6\right)x^{0}}{\left(2x^{1}+1\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-4x^{0}}{\left(2x^{1}+1\right)^{2}}
Tangohia te 4 i 4 me te 6 i te 2.
\frac{-4x^{0}}{\left(2x+1\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-4}{\left(2x+1\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.