Whakaoti mō x
x = -\frac{17}{2} = -8\frac{1}{2} = -8.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(2x+1\right)^{2}\times 3+\left(2x+5\right)^{2}\times 4=\left(2x+5\right)\left(2x+1\right)\times 7
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{5}{2},-\frac{1}{2} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(2x+1\right)^{2}\left(2x+5\right)^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o \left(2x+5\right)^{2},\left(2x+1\right)^{2},\left(2x+5\right)\left(2x+1\right).
\left(4x^{2}+4x+1\right)\times 3+\left(2x+5\right)^{2}\times 4=\left(2x+5\right)\left(2x+1\right)\times 7
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
12x^{2}+12x+3+\left(2x+5\right)^{2}\times 4=\left(2x+5\right)\left(2x+1\right)\times 7
Whakamahia te āhuatanga tohatoha hei whakarea te 4x^{2}+4x+1 ki te 3.
12x^{2}+12x+3+\left(4x^{2}+20x+25\right)\times 4=\left(2x+5\right)\left(2x+1\right)\times 7
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+5\right)^{2}.
12x^{2}+12x+3+16x^{2}+80x+100=\left(2x+5\right)\left(2x+1\right)\times 7
Whakamahia te āhuatanga tohatoha hei whakarea te 4x^{2}+20x+25 ki te 4.
28x^{2}+12x+3+80x+100=\left(2x+5\right)\left(2x+1\right)\times 7
Pahekotia te 12x^{2} me 16x^{2}, ka 28x^{2}.
28x^{2}+92x+3+100=\left(2x+5\right)\left(2x+1\right)\times 7
Pahekotia te 12x me 80x, ka 92x.
28x^{2}+92x+103=\left(2x+5\right)\left(2x+1\right)\times 7
Tāpirihia te 3 ki te 100, ka 103.
28x^{2}+92x+103=\left(4x^{2}+12x+5\right)\times 7
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+5 ki te 2x+1 ka whakakotahi i ngā kupu rite.
28x^{2}+92x+103=28x^{2}+84x+35
Whakamahia te āhuatanga tohatoha hei whakarea te 4x^{2}+12x+5 ki te 7.
28x^{2}+92x+103-28x^{2}=84x+35
Tangohia te 28x^{2} mai i ngā taha e rua.
92x+103=84x+35
Pahekotia te 28x^{2} me -28x^{2}, ka 0.
92x+103-84x=35
Tangohia te 84x mai i ngā taha e rua.
8x+103=35
Pahekotia te 92x me -84x, ka 8x.
8x=35-103
Tangohia te 103 mai i ngā taha e rua.
8x=-68
Tangohia te 103 i te 35, ka -68.
x=\frac{-68}{8}
Whakawehea ngā taha e rua ki te 8.
x=-\frac{17}{2}
Whakahekea te hautanga \frac{-68}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}