Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{3}{\sqrt{5}-\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}+\sqrt{2}.
\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Whakaarohia te \left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{5-2}
Pūrua \sqrt{5}. Pūrua \sqrt{2}.
\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}
Tangohia te 2 i te 5, ka 3.
\sqrt{5}+\sqrt{2}
Me whakakore te 3 me te 3.