Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3}{3\sqrt{2}}-\frac{\sqrt{72}}{50}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
\frac{3\sqrt{2}}{3\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{72}}{50}
Whakangāwaritia te tauraro o \frac{3}{3\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{3\sqrt{2}}{3\times 2}-\frac{\sqrt{72}}{50}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\sqrt{2}}{2}-\frac{\sqrt{72}}{50}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{\sqrt{2}}{2}-\frac{6\sqrt{2}}{50}
Tauwehea te 72=6^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 2} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{2}. Tuhia te pūtakerua o te 6^{2}.
\frac{\sqrt{2}}{2}-\frac{3}{25}\sqrt{2}
Whakawehea te 6\sqrt{2} ki te 50, kia riro ko \frac{3}{25}\sqrt{2}.
\frac{19}{50}\sqrt{2}
Pahekotia te \frac{\sqrt{2}}{2} me -\frac{3}{25}\sqrt{2}, ka \frac{19}{50}\sqrt{2}.