Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\sqrt{3}-2}{2\sqrt{7}+1}\times 1
Whakawehea te 2\sqrt{7}-1 ki te 2\sqrt{7}-1, kia riro ko 1.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{\left(2\sqrt{7}+1\right)\left(2\sqrt{7}-1\right)}\times 1
Whakangāwaritia te tauraro o \frac{3\sqrt{3}-2}{2\sqrt{7}+1} mā te whakarea i te taurunga me te tauraro ki te 2\sqrt{7}-1.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{\left(2\sqrt{7}\right)^{2}-1^{2}}\times 1
Whakaarohia te \left(2\sqrt{7}+1\right)\left(2\sqrt{7}-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{2^{2}\left(\sqrt{7}\right)^{2}-1^{2}}\times 1
Whakarohaina te \left(2\sqrt{7}\right)^{2}.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{4\left(\sqrt{7}\right)^{2}-1^{2}}\times 1
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{4\times 7-1^{2}}\times 1
Ko te pūrua o \sqrt{7} ko 7.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{28-1^{2}}\times 1
Whakareatia te 4 ki te 7, ka 28.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{28-1}\times 1
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{27}\times 1
Tangohia te 1 i te 28, ka 27.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{27}
Tuhia te \frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{27}\times 1 hei hautanga kotahi.
\frac{6\sqrt{3}\sqrt{7}-3\sqrt{3}-4\sqrt{7}+2}{27}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 3\sqrt{3}-2 ki ia tau o 2\sqrt{7}-1.
\frac{6\sqrt{21}-3\sqrt{3}-4\sqrt{7}+2}{27}
Hei whakarea \sqrt{3} me \sqrt{7}, whakareatia ngā tau i raro i te pūtake rua.