Aromātai
\frac{2\sqrt{21}}{9}-\frac{\sqrt{3}}{9}-\frac{4\sqrt{7}}{27}+\frac{2}{27}\approx 0.508010982
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{\left(2\sqrt{7}+1\right)\left(2\sqrt{7}-1\right)}
Whakangāwaritia te tauraro o \frac{3\sqrt{3}-2}{2\sqrt{7}+1} mā te whakarea i te taurunga me te tauraro ki te 2\sqrt{7}-1.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{\left(2\sqrt{7}\right)^{2}-1^{2}}
Whakaarohia te \left(2\sqrt{7}+1\right)\left(2\sqrt{7}-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{2^{2}\left(\sqrt{7}\right)^{2}-1^{2}}
Whakarohaina te \left(2\sqrt{7}\right)^{2}.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{4\left(\sqrt{7}\right)^{2}-1^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{4\times 7-1^{2}}
Ko te pūrua o \sqrt{7} ko 7.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{28-1^{2}}
Whakareatia te 4 ki te 7, ka 28.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{28-1}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{27}
Tangohia te 1 i te 28, ka 27.
\frac{6\sqrt{3}\sqrt{7}-3\sqrt{3}-4\sqrt{7}+2}{27}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 3\sqrt{3}-2 ki ia tau o 2\sqrt{7}-1.
\frac{6\sqrt{21}-3\sqrt{3}-4\sqrt{7}+2}{27}
Hei whakarea \sqrt{3} me \sqrt{7}, whakareatia ngā tau i raro i te pūtake rua.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}