Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\times 3\sqrt{2}-\sqrt{50}}{2\sqrt{72}}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
\frac{9\sqrt{2}-\sqrt{50}}{2\sqrt{72}}
Whakareatia te 3 ki te 3, ka 9.
\frac{9\sqrt{2}-5\sqrt{2}}{2\sqrt{72}}
Tauwehea te 50=5^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 2} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{2}. Tuhia te pūtakerua o te 5^{2}.
\frac{4\sqrt{2}}{2\sqrt{72}}
Pahekotia te 9\sqrt{2} me -5\sqrt{2}, ka 4\sqrt{2}.
\frac{4\sqrt{2}}{2\times 6\sqrt{2}}
Tauwehea te 72=6^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 2} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{2}. Tuhia te pūtakerua o te 6^{2}.
\frac{4\sqrt{2}}{12\sqrt{2}}
Whakareatia te 2 ki te 6, ka 12.
\frac{1}{3}
Me whakakore tahi te 4\sqrt{2} i te taurunga me te tauraro.