Aromātai
\frac{\sqrt{2}\left(2\sqrt{3}+3\right)}{10}\approx 0.914162017
Tauwehe
\frac{\sqrt{2} {(\sqrt{2} \sqrt{6} + 3)}}{10} = 0.9141620172685642
Tohaina
Kua tāruatia ki te papatopenga
\frac{3\sqrt{10}\sqrt{5}}{10\times 5}+\frac{\sqrt{10}}{10}\times \frac{2\sqrt{15}}{5}
Me whakarea te \frac{3\sqrt{10}}{10} ki te \frac{\sqrt{5}}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3\sqrt{10}\sqrt{5}}{10\times 5}+\frac{\sqrt{10}\times 2\sqrt{15}}{10\times 5}
Me whakarea te \frac{\sqrt{10}}{10} ki te \frac{2\sqrt{15}}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3\sqrt{10}\sqrt{5}}{10\times 5}+\frac{\sqrt{10}\sqrt{15}}{5\times 5}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{3\sqrt{10}\sqrt{5}}{5\times 10}+\frac{\sqrt{10}\sqrt{15}}{5\times 10}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakarohaina te 5\times 5.
\frac{3\sqrt{10}\sqrt{5}+\sqrt{10}\sqrt{15}}{5\times 10}
Tā te mea he rite te tauraro o \frac{3\sqrt{10}\sqrt{5}}{5\times 10} me \frac{\sqrt{10}\sqrt{15}}{5\times 10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{15\sqrt{2}+5\sqrt{6}}{5\times 10}
Mahia ngā whakarea i roto o 3\sqrt{10}\sqrt{5}+\sqrt{10}\sqrt{15}.
\frac{15\sqrt{2}+5\sqrt{6}}{50}
Whakarohaina te 5\times 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}