Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\frac{3\times 5+1}{5}}{0.4}\times 2}{3\left(2\times 2+1\right)}-\frac{1}{15}
Whakawehe \frac{\frac{\frac{3\times 5+1}{5}}{0.4}}{3} ki te \frac{2\times 2+1}{2} mā te whakarea \frac{\frac{\frac{3\times 5+1}{5}}{0.4}}{3} ki te tau huripoki o \frac{2\times 2+1}{2}.
\frac{\frac{3\times 5+1}{5\times 0.4}\times 2}{3\left(2\times 2+1\right)}-\frac{1}{15}
Tuhia te \frac{\frac{3\times 5+1}{5}}{0.4} hei hautanga kotahi.
\frac{\frac{15+1}{5\times 0.4}\times 2}{3\left(2\times 2+1\right)}-\frac{1}{15}
Whakareatia te 3 ki te 5, ka 15.
\frac{\frac{16}{5\times 0.4}\times 2}{3\left(2\times 2+1\right)}-\frac{1}{15}
Tāpirihia te 15 ki te 1, ka 16.
\frac{\frac{16}{2}\times 2}{3\left(2\times 2+1\right)}-\frac{1}{15}
Whakareatia te 5 ki te 0.4, ka 2.
\frac{8\times 2}{3\left(2\times 2+1\right)}-\frac{1}{15}
Whakawehea te 16 ki te 2, kia riro ko 8.
\frac{16}{3\left(2\times 2+1\right)}-\frac{1}{15}
Whakareatia te 8 ki te 2, ka 16.
\frac{16}{3\left(4+1\right)}-\frac{1}{15}
Whakareatia te 2 ki te 2, ka 4.
\frac{16}{3\times 5}-\frac{1}{15}
Tāpirihia te 4 ki te 1, ka 5.
\frac{16}{15}-\frac{1}{15}
Whakareatia te 3 ki te 5, ka 15.
\frac{16-1}{15}
Tā te mea he rite te tauraro o \frac{16}{15} me \frac{1}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{15}{15}
Tangohia te 1 i te 16, ka 15.
1
Whakawehea te 15 ki te 15, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}