Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(3\times 4+1\right)\times 4}{4\left(2\times 4+1\right)}=\frac{\frac{19\times 2+1}{2}}{\frac{11\times 4+1}{4}}
Whakawehe \frac{3\times 4+1}{4} ki te \frac{2\times 4+1}{4} mā te whakarea \frac{3\times 4+1}{4} ki te tau huripoki o \frac{2\times 4+1}{4}.
\frac{1+3\times 4}{1+2\times 4}=\frac{\frac{19\times 2+1}{2}}{\frac{11\times 4+1}{4}}
Me whakakore tahi te 4 i te taurunga me te tauraro.
\frac{1+12}{1+2\times 4}=\frac{\frac{19\times 2+1}{2}}{\frac{11\times 4+1}{4}}
Whakareatia te 3 ki te 4, ka 12.
\frac{13}{1+2\times 4}=\frac{\frac{19\times 2+1}{2}}{\frac{11\times 4+1}{4}}
Tāpirihia te 1 ki te 12, ka 13.
\frac{13}{1+8}=\frac{\frac{19\times 2+1}{2}}{\frac{11\times 4+1}{4}}
Whakareatia te 2 ki te 4, ka 8.
\frac{13}{9}=\frac{\frac{19\times 2+1}{2}}{\frac{11\times 4+1}{4}}
Tāpirihia te 1 ki te 8, ka 9.
\frac{13}{9}=\frac{\left(19\times 2+1\right)\times 4}{2\left(11\times 4+1\right)}
Whakawehe \frac{19\times 2+1}{2} ki te \frac{11\times 4+1}{4} mā te whakarea \frac{19\times 2+1}{2} ki te tau huripoki o \frac{11\times 4+1}{4}.
\frac{13}{9}=\frac{2\left(1+2\times 19\right)}{1+4\times 11}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{13}{9}=\frac{2\left(1+38\right)}{1+4\times 11}
Whakareatia te 2 ki te 19, ka 38.
\frac{13}{9}=\frac{2\times 39}{1+4\times 11}
Tāpirihia te 1 ki te 38, ka 39.
\frac{13}{9}=\frac{78}{1+4\times 11}
Whakareatia te 2 ki te 39, ka 78.
\frac{13}{9}=\frac{78}{1+44}
Whakareatia te 4 ki te 11, ka 44.
\frac{13}{9}=\frac{78}{45}
Tāpirihia te 1 ki te 44, ka 45.
\frac{13}{9}=\frac{26}{15}
Whakahekea te hautanga \frac{78}{45} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{65}{45}=\frac{78}{45}
Ko te maha noa iti rawa atu o 9 me 15 ko 45. Me tahuri \frac{13}{9} me \frac{26}{15} ki te hautau me te tautūnga 45.
\text{false}
Whakatauritea te \frac{65}{45} me te \frac{78}{45}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}