Whakaoti mō n
n = \frac{703}{28} = 25\frac{3}{28} \approx 25.107142857
Tohaina
Kua tāruatia ki te papatopenga
\frac{4}{19}n\times \frac{3\times 2+1}{2}=\frac{18\times 2+1}{2}
Tē taea kia ōrite te tāupe n ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te n.
\frac{4}{19}n\times \frac{6+1}{2}=\frac{18\times 2+1}{2}
Whakareatia te 3 ki te 2, ka 6.
\frac{4}{19}n\times \frac{7}{2}=\frac{18\times 2+1}{2}
Tāpirihia te 6 ki te 1, ka 7.
\frac{4\times 7}{19\times 2}n=\frac{18\times 2+1}{2}
Me whakarea te \frac{4}{19} ki te \frac{7}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{28}{38}n=\frac{18\times 2+1}{2}
Mahia ngā whakarea i roto i te hautanga \frac{4\times 7}{19\times 2}.
\frac{14}{19}n=\frac{18\times 2+1}{2}
Whakahekea te hautanga \frac{28}{38} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{14}{19}n=\frac{36+1}{2}
Whakareatia te 18 ki te 2, ka 36.
\frac{14}{19}n=\frac{37}{2}
Tāpirihia te 36 ki te 1, ka 37.
n=\frac{37}{2}\times \frac{19}{14}
Me whakarea ngā taha e rua ki te \frac{19}{14}, te tau utu o \frac{14}{19}.
n=\frac{37\times 19}{2\times 14}
Me whakarea te \frac{37}{2} ki te \frac{19}{14} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
n=\frac{703}{28}
Mahia ngā whakarea i roto i te hautanga \frac{37\times 19}{2\times 14}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}