Aromātai
\frac{3\left(\alpha ^{2}+\alpha +\beta ^{2}+\beta \right)}{\left(\alpha +1\right)\left(\beta +1\right)}
Tauwehe
\frac{3\left(\alpha ^{2}+\alpha +\beta ^{2}+\beta \right)}{\left(\alpha +1\right)\left(\beta +1\right)}
Pātaitai
5 raruraru e ōrite ana ki:
\frac { 3 \beta } { \alpha + 1 } + \frac { 3 \alpha } { \beta + 1 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{3\beta \left(\beta +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}+\frac{3\alpha \left(\alpha +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \alpha +1 me \beta +1 ko \left(\alpha +1\right)\left(\beta +1\right). Whakareatia \frac{3\beta }{\alpha +1} ki te \frac{\beta +1}{\beta +1}. Whakareatia \frac{3\alpha }{\beta +1} ki te \frac{\alpha +1}{\alpha +1}.
\frac{3\beta \left(\beta +1\right)+3\alpha \left(\alpha +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}
Tā te mea he rite te tauraro o \frac{3\beta \left(\beta +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)} me \frac{3\alpha \left(\alpha +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3\beta ^{2}+3\beta +3\alpha ^{2}+3\alpha }{\left(\alpha +1\right)\left(\beta +1\right)}
Mahia ngā whakarea i roto o 3\beta \left(\beta +1\right)+3\alpha \left(\alpha +1\right).
\frac{3\beta ^{2}+3\beta +3\alpha ^{2}+3\alpha }{\alpha \beta +\alpha +\beta +1}
Whakarohaina te \left(\alpha +1\right)\left(\beta +1\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}