Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\beta \left(\beta +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}+\frac{3\alpha \left(\alpha +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \alpha +1 me \beta +1 ko \left(\alpha +1\right)\left(\beta +1\right). Whakareatia \frac{3\beta }{\alpha +1} ki te \frac{\beta +1}{\beta +1}. Whakareatia \frac{3\alpha }{\beta +1} ki te \frac{\alpha +1}{\alpha +1}.
\frac{3\beta \left(\beta +1\right)+3\alpha \left(\alpha +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}
Tā te mea he rite te tauraro o \frac{3\beta \left(\beta +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)} me \frac{3\alpha \left(\alpha +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3\beta ^{2}+3\beta +3\alpha ^{2}+3\alpha }{\left(\alpha +1\right)\left(\beta +1\right)}
Mahia ngā whakarea i roto o 3\beta \left(\beta +1\right)+3\alpha \left(\alpha +1\right).
\frac{3\beta ^{2}+3\beta +3\alpha ^{2}+3\alpha }{\alpha \beta +\alpha +\beta +1}
Whakarohaina te \left(\alpha +1\right)\left(\beta +1\right).