Aromātai
-2
Tauwehe
-2
Tohaina
Kua tāruatia ki te papatopenga
\frac{9\times 2^{1}\times \frac{2}{3}\times \frac{2}{4}}{6}-3
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{9\times 2\times \frac{2}{3}\times \frac{2}{4}}{6}-3
Tātaihia te 2 mā te pū o 1, kia riro ko 2.
\frac{18\times \frac{2}{3}\times \frac{2}{4}}{6}-3
Whakareatia te 9 ki te 2, ka 18.
\frac{\frac{18\times 2}{3}\times \frac{2}{4}}{6}-3
Tuhia te 18\times \frac{2}{3} hei hautanga kotahi.
\frac{\frac{36}{3}\times \frac{2}{4}}{6}-3
Whakareatia te 18 ki te 2, ka 36.
\frac{12\times \frac{2}{4}}{6}-3
Whakawehea te 36 ki te 3, kia riro ko 12.
\frac{12\times \frac{1}{2}}{6}-3
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{12}{2}}{6}-3
Whakareatia te 12 ki te \frac{1}{2}, ka \frac{12}{2}.
\frac{6}{6}-3
Whakawehea te 12 ki te 2, kia riro ko 6.
1-3
Whakawehea te 6 ki te 6, kia riro ko 1.
-2
Tangohia te 3 i te 1, ka -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}