Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
\frac{531441-3^{11}-3^{10}}{3^{11}+3^{10}+3^{10}}
Tātaihia te 3 mā te pū o 12, kia riro ko 531441.
\frac{531441-177147-3^{10}}{3^{11}+3^{10}+3^{10}}
Tātaihia te 3 mā te pū o 11, kia riro ko 177147.
\frac{354294-3^{10}}{3^{11}+3^{10}+3^{10}}
Tangohia te 177147 i te 531441, ka 354294.
\frac{354294-59049}{3^{11}+3^{10}+3^{10}}
Tātaihia te 3 mā te pū o 10, kia riro ko 59049.
\frac{295245}{3^{11}+3^{10}+3^{10}}
Tangohia te 59049 i te 354294, ka 295245.
\frac{295245}{177147+3^{10}+3^{10}}
Tātaihia te 3 mā te pū o 11, kia riro ko 177147.
\frac{295245}{177147+59049+3^{10}}
Tātaihia te 3 mā te pū o 10, kia riro ko 59049.
\frac{295245}{236196+3^{10}}
Tāpirihia te 177147 ki te 59049, ka 236196.
\frac{295245}{236196+59049}
Tātaihia te 3 mā te pū o 10, kia riro ko 59049.
\frac{295245}{295245}
Tāpirihia te 236196 ki te 59049, ka 295245.
1
Whakawehea te 295245 ki te 295245, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}