Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{1}{9}\times \left(\frac{1}{5}\right)^{-3}\sqrt[3]{23}}{3-\frac{1}{3}-2\left(-\frac{1}{2}+1\right)}
Tātaihia te 3 mā te pū o -2, kia riro ko \frac{1}{9}.
\frac{\frac{1}{9}\times 125\sqrt[3]{23}}{3-\frac{1}{3}-2\left(-\frac{1}{2}+1\right)}
Tātaihia te \frac{1}{5} mā te pū o -3, kia riro ko 125.
\frac{\frac{125}{9}\sqrt[3]{23}}{3-\frac{1}{3}-2\left(-\frac{1}{2}+1\right)}
Whakareatia te \frac{1}{9} ki te 125, ka \frac{125}{9}.
\frac{\frac{125}{9}\sqrt[3]{23}}{\frac{8}{3}-2\left(-\frac{1}{2}+1\right)}
Tangohia te \frac{1}{3} i te 3, ka \frac{8}{3}.
\frac{\frac{125}{9}\sqrt[3]{23}}{\frac{8}{3}-2\times \frac{1}{2}}
Tāpirihia te -\frac{1}{2} ki te 1, ka \frac{1}{2}.
\frac{\frac{125}{9}\sqrt[3]{23}}{\frac{8}{3}-1}
Whakareatia te 2 ki te \frac{1}{2}, ka 1.
\frac{\frac{125}{9}\sqrt[3]{23}}{\frac{5}{3}}
Tangohia te 1 i te \frac{8}{3}, ka \frac{5}{3}.
\frac{\frac{125}{9}\sqrt[3]{23}\times 3}{5}
Whakawehe \frac{125}{9}\sqrt[3]{23} ki te \frac{5}{3} mā te whakarea \frac{125}{9}\sqrt[3]{23} ki te tau huripoki o \frac{5}{3}.
\frac{\frac{125}{3}\sqrt[3]{23}}{5}
Whakareatia te \frac{125}{9} ki te 3, ka \frac{125}{3}.
\frac{25}{3}\sqrt[3]{23}
Whakawehea te \frac{125}{3}\sqrt[3]{23} ki te 5, kia riro ko \frac{25}{3}\sqrt[3]{23}.