Aromātai
25
Tauwehe
5^{2}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{1}{9}\times \left(\frac{1}{5}\right)^{-3}\sqrt[3]{27}}{3-\frac{1}{3}-2\left(-\frac{1}{2}+1\right)}
Tātaihia te 3 mā te pū o -2, kia riro ko \frac{1}{9}.
\frac{\frac{1}{9}\times 125\sqrt[3]{27}}{3-\frac{1}{3}-2\left(-\frac{1}{2}+1\right)}
Tātaihia te \frac{1}{5} mā te pū o -3, kia riro ko 125.
\frac{\frac{125}{9}\sqrt[3]{27}}{3-\frac{1}{3}-2\left(-\frac{1}{2}+1\right)}
Whakareatia te \frac{1}{9} ki te 125, ka \frac{125}{9}.
\frac{\frac{125}{9}\times 3}{3-\frac{1}{3}-2\left(-\frac{1}{2}+1\right)}
Tātaitia te \sqrt[3]{27} kia tae ki 3.
\frac{\frac{125}{3}}{3-\frac{1}{3}-2\left(-\frac{1}{2}+1\right)}
Whakareatia te \frac{125}{9} ki te 3, ka \frac{125}{3}.
\frac{\frac{125}{3}}{\frac{8}{3}-2\left(-\frac{1}{2}+1\right)}
Tangohia te \frac{1}{3} i te 3, ka \frac{8}{3}.
\frac{\frac{125}{3}}{\frac{8}{3}-2\times \frac{1}{2}}
Tāpirihia te -\frac{1}{2} ki te 1, ka \frac{1}{2}.
\frac{\frac{125}{3}}{\frac{8}{3}-1}
Whakareatia te 2 ki te \frac{1}{2}, ka 1.
\frac{\frac{125}{3}}{\frac{5}{3}}
Tangohia te 1 i te \frac{8}{3}, ka \frac{5}{3}.
\frac{125}{3}\times \frac{3}{5}
Whakawehe \frac{125}{3} ki te \frac{5}{3} mā te whakarea \frac{125}{3} ki te tau huripoki o \frac{5}{3}.
25
Whakareatia te \frac{125}{3} ki te \frac{3}{5}, ka 25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}