Whakaoti mō y
y=-3
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 3 + y } { 5 } = \frac { - 12 - 4 y } { - 2 }
Tohaina
Kua tāruatia ki te papatopenga
2\left(3+y\right)=-5\left(-12-4y\right)
Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,-2.
6+2y=-5\left(-12-4y\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3+y.
6+2y=60+20y
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te -12-4y.
6+2y-20y=60
Tangohia te 20y mai i ngā taha e rua.
6-18y=60
Pahekotia te 2y me -20y, ka -18y.
-18y=60-6
Tangohia te 6 mai i ngā taha e rua.
-18y=54
Tangohia te 6 i te 60, ka 54.
y=\frac{54}{-18}
Whakawehea ngā taha e rua ki te -18.
y=-3
Whakawehea te 54 ki te -18, kia riro ko -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}