Whakaoti mō x (complex solution)
x\in \mathrm{C}\setminus -1,0
Whakaoti mō x
x\in \mathrm{R}\setminus -1,0
Graph
Tohaina
Kua tāruatia ki te papatopenga
3+4x+x\left(x+1\right)\left(-1\right)=\left(x+1\right)\times 3-xx
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+x,x,x+1.
3+4x+x\left(x+1\right)\left(-1\right)=\left(x+1\right)\times 3-x^{2}
Whakareatia te x ki te x, ka x^{2}.
3+4x+\left(x^{2}+x\right)\left(-1\right)=\left(x+1\right)\times 3-x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+1.
3+4x-x^{2}-x=\left(x+1\right)\times 3-x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+x ki te -1.
3+3x-x^{2}=\left(x+1\right)\times 3-x^{2}
Pahekotia te 4x me -x, ka 3x.
3+3x-x^{2}=3x+3-x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 3.
3+3x-x^{2}-3x=3-x^{2}
Tangohia te 3x mai i ngā taha e rua.
3-x^{2}=3-x^{2}
Pahekotia te 3x me -3x, ka 0.
3-x^{2}-3=-x^{2}
Tangohia te 3 mai i ngā taha e rua.
-x^{2}=-x^{2}
Tangohia te 3 i te 3, ka 0.
-x^{2}+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
0=0
Pahekotia te -x^{2} me x^{2}, ka 0.
\text{true}
Whakatauritea te 0 me te 0.
x\in \mathrm{C}
He pono tēnei mō tētahi x ahakoa.
x\in \mathrm{C}\setminus -1,0
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0.
3+4x+x\left(x+1\right)\left(-1\right)=\left(x+1\right)\times 3-xx
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+x,x,x+1.
3+4x+x\left(x+1\right)\left(-1\right)=\left(x+1\right)\times 3-x^{2}
Whakareatia te x ki te x, ka x^{2}.
3+4x+\left(x^{2}+x\right)\left(-1\right)=\left(x+1\right)\times 3-x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+1.
3+4x-x^{2}-x=\left(x+1\right)\times 3-x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+x ki te -1.
3+3x-x^{2}=\left(x+1\right)\times 3-x^{2}
Pahekotia te 4x me -x, ka 3x.
3+3x-x^{2}=3x+3-x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 3.
3+3x-x^{2}-3x=3-x^{2}
Tangohia te 3x mai i ngā taha e rua.
3-x^{2}=3-x^{2}
Pahekotia te 3x me -3x, ka 0.
3-x^{2}-3=-x^{2}
Tangohia te 3 mai i ngā taha e rua.
-x^{2}=-x^{2}
Tangohia te 3 i te 3, ka 0.
-x^{2}+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
0=0
Pahekotia te -x^{2} me x^{2}, ka 0.
\text{true}
Whakatauritea te 0 me te 0.
x\in \mathrm{R}
He pono tēnei mō tētahi x ahakoa.
x\in \mathrm{R}\setminus -1,0
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}