Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3+4x+x\left(x+1\right)\left(-1\right)=\left(x+1\right)\times 3-xx
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+x,x,x+1.
3+4x+x\left(x+1\right)\left(-1\right)=\left(x+1\right)\times 3-x^{2}
Whakareatia te x ki te x, ka x^{2}.
3+4x+\left(x^{2}+x\right)\left(-1\right)=\left(x+1\right)\times 3-x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+1.
3+4x-x^{2}-x=\left(x+1\right)\times 3-x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+x ki te -1.
3+3x-x^{2}=\left(x+1\right)\times 3-x^{2}
Pahekotia te 4x me -x, ka 3x.
3+3x-x^{2}=3x+3-x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 3.
3+3x-x^{2}-3x=3-x^{2}
Tangohia te 3x mai i ngā taha e rua.
3-x^{2}=3-x^{2}
Pahekotia te 3x me -3x, ka 0.
3-x^{2}-3=-x^{2}
Tangohia te 3 mai i ngā taha e rua.
-x^{2}=-x^{2}
Tangohia te 3 i te 3, ka 0.
-x^{2}+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
0=0
Pahekotia te -x^{2} me x^{2}, ka 0.
\text{true}
Whakatauritea te 0 me te 0.
x\in \mathrm{C}
He pono tēnei mō tētahi x ahakoa.
x\in \mathrm{C}\setminus -1,0
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0.
3+4x+x\left(x+1\right)\left(-1\right)=\left(x+1\right)\times 3-xx
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+x,x,x+1.
3+4x+x\left(x+1\right)\left(-1\right)=\left(x+1\right)\times 3-x^{2}
Whakareatia te x ki te x, ka x^{2}.
3+4x+\left(x^{2}+x\right)\left(-1\right)=\left(x+1\right)\times 3-x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+1.
3+4x-x^{2}-x=\left(x+1\right)\times 3-x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+x ki te -1.
3+3x-x^{2}=\left(x+1\right)\times 3-x^{2}
Pahekotia te 4x me -x, ka 3x.
3+3x-x^{2}=3x+3-x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 3.
3+3x-x^{2}-3x=3-x^{2}
Tangohia te 3x mai i ngā taha e rua.
3-x^{2}=3-x^{2}
Pahekotia te 3x me -3x, ka 0.
3-x^{2}-3=-x^{2}
Tangohia te 3 mai i ngā taha e rua.
-x^{2}=-x^{2}
Tangohia te 3 i te 3, ka 0.
-x^{2}+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
0=0
Pahekotia te -x^{2} me x^{2}, ka 0.
\text{true}
Whakatauritea te 0 me te 0.
x\in \mathrm{R}
He pono tēnei mō tētahi x ahakoa.
x\in \mathrm{R}\setminus -1,0
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0.