Aromātai
\frac{96}{5}=19.2
Tauwehe
\frac{2 ^ {5} \cdot 3}{5} = 19\frac{1}{5} = 19.2
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 3 + 4 + 9 + 10 + 12 + 15 + 17 + 27 + 47 + 48 } { 10 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{7+9+10+12+15+17+27+47+48}{10}
Tāpirihia te 3 ki te 4, ka 7.
\frac{16+10+12+15+17+27+47+48}{10}
Tāpirihia te 7 ki te 9, ka 16.
\frac{26+12+15+17+27+47+48}{10}
Tāpirihia te 16 ki te 10, ka 26.
\frac{38+15+17+27+47+48}{10}
Tāpirihia te 26 ki te 12, ka 38.
\frac{53+17+27+47+48}{10}
Tāpirihia te 38 ki te 15, ka 53.
\frac{70+27+47+48}{10}
Tāpirihia te 53 ki te 17, ka 70.
\frac{97+47+48}{10}
Tāpirihia te 70 ki te 27, ka 97.
\frac{144+48}{10}
Tāpirihia te 97 ki te 47, ka 144.
\frac{192}{10}
Tāpirihia te 144 ki te 48, ka 192.
\frac{96}{5}
Whakahekea te hautanga \frac{192}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}