Whakaoti mō x
x=-\frac{3}{7}\approx -0.428571429
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{3+2x}{5}-2-\left(-\frac{3-x}{3}\right)=x
Hei kimi i te tauaro o 2-\frac{3-x}{3}, kimihia te tauaro o ia taurangi.
\frac{3}{5}+\frac{2}{5}x-2-\left(-\frac{3-x}{3}\right)=x
Whakawehea ia wā o 3+2x ki te 5, kia riro ko \frac{3}{5}+\frac{2}{5}x.
\frac{3}{5}+\frac{2}{5}x-\frac{10}{5}-\left(-\frac{3-x}{3}\right)=x
Me tahuri te 2 ki te hautau \frac{10}{5}.
\frac{3-10}{5}+\frac{2}{5}x-\left(-\frac{3-x}{3}\right)=x
Tā te mea he rite te tauraro o \frac{3}{5} me \frac{10}{5}, me tango rāua mā te tango i ō raua taurunga.
-\frac{7}{5}+\frac{2}{5}x-\left(-\frac{3-x}{3}\right)=x
Tangohia te 10 i te 3, ka -7.
-\frac{7}{5}+\frac{2}{5}x-\left(-\left(1-\frac{1}{3}x\right)\right)=x
Whakawehea ia wā o 3-x ki te 3, kia riro ko 1-\frac{1}{3}x.
-\frac{7}{5}+\frac{2}{5}x-\left(-1-\left(-\frac{1}{3}x\right)\right)=x
Hei kimi i te tauaro o 1-\frac{1}{3}x, kimihia te tauaro o ia taurangi.
-\frac{7}{5}+\frac{2}{5}x-\left(-1+\frac{1}{3}x\right)=x
Ko te tauaro o -\frac{1}{3}x ko \frac{1}{3}x.
-\frac{7}{5}+\frac{2}{5}x-\left(-1\right)-\frac{1}{3}x=x
Hei kimi i te tauaro o -1+\frac{1}{3}x, kimihia te tauaro o ia taurangi.
-\frac{7}{5}+\frac{2}{5}x+1-\frac{1}{3}x=x
Ko te tauaro o -1 ko 1.
-\frac{7}{5}+\frac{2}{5}x+\frac{5}{5}-\frac{1}{3}x=x
Me tahuri te 1 ki te hautau \frac{5}{5}.
\frac{-7+5}{5}+\frac{2}{5}x-\frac{1}{3}x=x
Tā te mea he rite te tauraro o -\frac{7}{5} me \frac{5}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{2}{5}+\frac{2}{5}x-\frac{1}{3}x=x
Tāpirihia te -7 ki te 5, ka -2.
-\frac{2}{5}+\frac{1}{15}x=x
Pahekotia te \frac{2}{5}x me -\frac{1}{3}x, ka \frac{1}{15}x.
-\frac{2}{5}+\frac{1}{15}x-x=0
Tangohia te x mai i ngā taha e rua.
-\frac{2}{5}-\frac{14}{15}x=0
Pahekotia te \frac{1}{15}x me -x, ka -\frac{14}{15}x.
-\frac{14}{15}x=\frac{2}{5}
Me tāpiri te \frac{2}{5} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{2}{5}\left(-\frac{15}{14}\right)
Me whakarea ngā taha e rua ki te -\frac{15}{14}, te tau utu o -\frac{14}{15}.
x=\frac{2\left(-15\right)}{5\times 14}
Me whakarea te \frac{2}{5} ki te -\frac{15}{14} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{-30}{70}
Mahia ngā whakarea i roto i te hautanga \frac{2\left(-15\right)}{5\times 14}.
x=-\frac{3}{7}
Whakahekea te hautanga \frac{-30}{70} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}