Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(3+2i\right)\left(5+i\right)}{\left(5-i\right)\left(5+i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 5+i.
\frac{\left(3+2i\right)\left(5+i\right)}{5^{2}-i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+2i\right)\left(5+i\right)}{26}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{3\times 5+3i+2i\times 5+2i^{2}}{26}
Me whakarea ngā tau matatini 3+2i me 5+i pēnā i te whakarea huarua.
\frac{3\times 5+3i+2i\times 5+2\left(-1\right)}{26}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{15+3i+10i-2}{26}
Mahia ngā whakarea i roto o 3\times 5+3i+2i\times 5+2\left(-1\right).
\frac{15-2+\left(3+10\right)i}{26}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 15+3i+10i-2.
\frac{13+13i}{26}
Mahia ngā tāpiri i roto o 15-2+\left(3+10\right)i.
\frac{1}{2}+\frac{1}{2}i
Whakawehea te 13+13i ki te 26, kia riro ko \frac{1}{2}+\frac{1}{2}i.
Re(\frac{\left(3+2i\right)\left(5+i\right)}{\left(5-i\right)\left(5+i\right)})
Me whakarea te taurunga me te tauraro o \frac{3+2i}{5-i} ki te haumi hiato o te tauraro, 5+i.
Re(\frac{\left(3+2i\right)\left(5+i\right)}{5^{2}-i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+2i\right)\left(5+i\right)}{26})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{3\times 5+3i+2i\times 5+2i^{2}}{26})
Me whakarea ngā tau matatini 3+2i me 5+i pēnā i te whakarea huarua.
Re(\frac{3\times 5+3i+2i\times 5+2\left(-1\right)}{26})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{15+3i+10i-2}{26})
Mahia ngā whakarea i roto o 3\times 5+3i+2i\times 5+2\left(-1\right).
Re(\frac{15-2+\left(3+10\right)i}{26})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 15+3i+10i-2.
Re(\frac{13+13i}{26})
Mahia ngā tāpiri i roto o 15-2+\left(3+10\right)i.
Re(\frac{1}{2}+\frac{1}{2}i)
Whakawehea te 13+13i ki te 26, kia riro ko \frac{1}{2}+\frac{1}{2}i.
\frac{1}{2}
Ko te wāhi tūturu o \frac{1}{2}+\frac{1}{2}i ko \frac{1}{2}.