Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(3+2i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 1-i.
\frac{\left(3+2i\right)\left(1-i\right)}{1^{2}-i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+2i\right)\left(1-i\right)}{2}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{3\times 1+3\left(-i\right)+2i\times 1+2\left(-1\right)i^{2}}{2}
Me whakarea ngā tau matatini 3+2i me 1-i pēnā i te whakarea huarua.
\frac{3\times 1+3\left(-i\right)+2i\times 1+2\left(-1\right)\left(-1\right)}{2}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{3-3i+2i+2}{2}
Mahia ngā whakarea i roto o 3\times 1+3\left(-i\right)+2i\times 1+2\left(-1\right)\left(-1\right).
\frac{3+2+\left(-3+2\right)i}{2}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 3-3i+2i+2.
\frac{5-i}{2}
Mahia ngā tāpiri i roto o 3+2+\left(-3+2\right)i.
\frac{5}{2}-\frac{1}{2}i
Whakawehea te 5-i ki te 2, kia riro ko \frac{5}{2}-\frac{1}{2}i.
Re(\frac{\left(3+2i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Me whakarea te taurunga me te tauraro o \frac{3+2i}{1+i} ki te haumi hiato o te tauraro, 1-i.
Re(\frac{\left(3+2i\right)\left(1-i\right)}{1^{2}-i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+2i\right)\left(1-i\right)}{2})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{3\times 1+3\left(-i\right)+2i\times 1+2\left(-1\right)i^{2}}{2})
Me whakarea ngā tau matatini 3+2i me 1-i pēnā i te whakarea huarua.
Re(\frac{3\times 1+3\left(-i\right)+2i\times 1+2\left(-1\right)\left(-1\right)}{2})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{3-3i+2i+2}{2})
Mahia ngā whakarea i roto o 3\times 1+3\left(-i\right)+2i\times 1+2\left(-1\right)\left(-1\right).
Re(\frac{3+2+\left(-3+2\right)i}{2})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 3-3i+2i+2.
Re(\frac{5-i}{2})
Mahia ngā tāpiri i roto o 3+2+\left(-3+2\right)i.
Re(\frac{5}{2}-\frac{1}{2}i)
Whakawehea te 5-i ki te 2, kia riro ko \frac{5}{2}-\frac{1}{2}i.
\frac{5}{2}
Ko te wāhi tūturu o \frac{5}{2}-\frac{1}{2}i ko \frac{5}{2}.