Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}\times \frac{\sqrt{2}-1}{\sqrt{2}}
Whakangāwaritia te tauraro o \frac{3+2\sqrt{2}}{2+\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 2-\sqrt{2}.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2^{2}-\left(\sqrt{2}\right)^{2}}\times \frac{\sqrt{2}-1}{\sqrt{2}}
Whakaarohia te \left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{4-2}\times \frac{\sqrt{2}-1}{\sqrt{2}}
Pūrua 2. Pūrua \sqrt{2}.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2}\times \frac{\sqrt{2}-1}{\sqrt{2}}
Tangohia te 2 i te 4, ka 2.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2}\times \frac{\left(\sqrt{2}-1\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{2}-1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2}\times \frac{\left(\sqrt{2}-1\right)\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{2\times 2}
Me whakarea te \frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2} ki te \frac{\left(\sqrt{2}-1\right)\sqrt{2}}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Whakareatia te 2 ki te 2, ka 4.
\frac{\left(6-3\sqrt{2}+4\sqrt{2}-2\left(\sqrt{2}\right)^{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 3+2\sqrt{2} ki ia tau o 2-\sqrt{2}.
\frac{\left(6+\sqrt{2}-2\left(\sqrt{2}\right)^{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Pahekotia te -3\sqrt{2} me 4\sqrt{2}, ka \sqrt{2}.
\frac{\left(6+\sqrt{2}-2\times 2\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\left(6+\sqrt{2}-4\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Whakareatia te -2 ki te 2, ka -4.
\frac{\left(2+\sqrt{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Tangohia te 4 i te 6, ka 2.
\frac{\left(2\sqrt{2}-2+\left(\sqrt{2}\right)^{2}-\sqrt{2}\right)\sqrt{2}}{4}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2+\sqrt{2} ki ia tau o \sqrt{2}-1.
\frac{\left(2\sqrt{2}-2+2-\sqrt{2}\right)\sqrt{2}}{4}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\left(2\sqrt{2}-\sqrt{2}\right)\sqrt{2}}{4}
Tāpirihia te -2 ki te 2, ka 0.
\frac{\sqrt{2}\sqrt{2}}{4}
Pahekotia te 2\sqrt{2} me -\sqrt{2}, ka \sqrt{2}.
\frac{2}{4}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{1}{2}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.