Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(3+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{3+\sqrt{5}}{\sqrt{7}-\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}+\sqrt{3}.
\frac{\left(3+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Whakaarohia te \left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{3}\right)}{7-3}
Pūrua \sqrt{7}. Pūrua \sqrt{3}.
\frac{\left(3+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{3}\right)}{4}
Tangohia te 3 i te 7, ka 4.
\frac{3\sqrt{7}+3\sqrt{3}+\sqrt{5}\sqrt{7}+\sqrt{5}\sqrt{3}}{4}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 3+\sqrt{5} ki ia tau o \sqrt{7}+\sqrt{3}.
\frac{3\sqrt{7}+3\sqrt{3}+\sqrt{35}+\sqrt{5}\sqrt{3}}{4}
Hei whakarea \sqrt{5} me \sqrt{7}, whakareatia ngā tau i raro i te pūtake rua.
\frac{3\sqrt{7}+3\sqrt{3}+\sqrt{35}+\sqrt{15}}{4}
Hei whakarea \sqrt{5} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.