Aromātai
\frac{\sqrt{15}+\sqrt{35}+3\sqrt{3}+3\sqrt{7}}{4}\approx 5.730617371
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 3 + \sqrt { 5 } } { \sqrt { 7 } - \sqrt { 3 } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(3+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{3+\sqrt{5}}{\sqrt{7}-\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}+\sqrt{3}.
\frac{\left(3+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Whakaarohia te \left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{3}\right)}{7-3}
Pūrua \sqrt{7}. Pūrua \sqrt{3}.
\frac{\left(3+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{3}\right)}{4}
Tangohia te 3 i te 7, ka 4.
\frac{3\sqrt{7}+3\sqrt{3}+\sqrt{5}\sqrt{7}+\sqrt{5}\sqrt{3}}{4}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 3+\sqrt{5} ki ia tau o \sqrt{7}+\sqrt{3}.
\frac{3\sqrt{7}+3\sqrt{3}+\sqrt{35}+\sqrt{5}\sqrt{3}}{4}
Hei whakarea \sqrt{5} me \sqrt{7}, whakareatia ngā tau i raro i te pūtake rua.
\frac{3\sqrt{7}+3\sqrt{3}+\sqrt{35}+\sqrt{15}}{4}
Hei whakarea \sqrt{5} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}