Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(28y^{3}\right)^{1}\times \frac{1}{7y^{7}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
28^{1}\left(y^{3}\right)^{1}\times \frac{1}{7}\times \frac{1}{y^{7}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
28^{1}\times \frac{1}{7}\left(y^{3}\right)^{1}\times \frac{1}{y^{7}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
28^{1}\times \frac{1}{7}y^{3}y^{7\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
28^{1}\times \frac{1}{7}y^{3}y^{-7}
Whakareatia 7 ki te -1.
28^{1}\times \frac{1}{7}y^{3-7}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
28^{1}\times \frac{1}{7}y^{-4}
Tāpirihia ngā taupū 3 me -7.
28\times \frac{1}{7}y^{-4}
Hīkina te 28 ki te pū 1.
4y^{-4}
Whakareatia 28 ki te \frac{1}{7}.
\frac{28^{1}y^{3}}{7^{1}y^{7}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{28^{1}y^{3-7}}{7^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{28^{1}y^{-4}}{7^{1}}
Tango 7 mai i 3.
4y^{-4}
Whakawehe 28 ki te 7.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{28}{7}y^{3-7})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}y}(4y^{-4})
Mahia ngā tātaitanga.
-4\times 4y^{-4-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-16y^{-5}
Mahia ngā tātaitanga.