Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki v
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{28^{1}v^{3}u^{3}}{24^{1}v^{4}u^{2}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{28^{1}}{24^{1}}v^{3-4}u^{3-2}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{28^{1}}{24^{1}}\times \frac{1}{v}u^{3-2}
Tango 4 mai i 3.
\frac{28^{1}}{24^{1}}\times \frac{1}{v}u^{1}
Tango 2 mai i 3.
\frac{7}{6}\times \frac{1}{v}u
Whakahekea te hautanga \frac{28}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{28u^{3}}{24u^{2}}v^{3-4})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{7u}{6}\times \frac{1}{v})
Mahia ngā tātaitanga.
-\frac{7u}{6}v^{-1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\left(-\frac{7u}{6}\right)v^{-2}
Mahia ngā tātaitanga.