Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki v
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{27^{1}v^{2}w^{1}}{18^{1}v^{3}w^{1}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{27^{1}}{18^{1}}v^{2-3}w^{1-1}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{27^{1}}{18^{1}}\times \frac{1}{v}w^{1-1}
Tango 3 mai i 2.
\frac{27^{1}}{18^{1}}\times \frac{1}{v}w^{0}
Tango 1 mai i 1.
\frac{27^{1}}{18^{1}}\times \frac{1}{v}
Mō tētahi tau a mahue te 0, a^{0}=1.
\frac{3}{2}\times \frac{1}{v}
Whakahekea te hautanga \frac{27}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{27w}{18w}v^{2-3})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{3}{2}\times \frac{1}{v})
Mahia ngā tātaitanga.
-\frac{3}{2}v^{-1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-\frac{3}{2}v^{-2}
Mahia ngā tātaitanga.