Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

26x\left(2x-6\right)=96x+3x^{2}-18
Whakareatia ngā taha e rua o te whārite ki te 3.
52x^{2}-156x=96x+3x^{2}-18
Whakamahia te āhuatanga tohatoha hei whakarea te 26x ki te 2x-6.
52x^{2}-156x-96x=3x^{2}-18
Tangohia te 96x mai i ngā taha e rua.
52x^{2}-252x=3x^{2}-18
Pahekotia te -156x me -96x, ka -252x.
52x^{2}-252x-3x^{2}=-18
Tangohia te 3x^{2} mai i ngā taha e rua.
49x^{2}-252x=-18
Pahekotia te 52x^{2} me -3x^{2}, ka 49x^{2}.
49x^{2}-252x+18=0
Me tāpiri te 18 ki ngā taha e rua.
x=\frac{-\left(-252\right)±\sqrt{\left(-252\right)^{2}-4\times 49\times 18}}{2\times 49}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 49 mō a, -252 mō b, me 18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-252\right)±\sqrt{63504-4\times 49\times 18}}{2\times 49}
Pūrua -252.
x=\frac{-\left(-252\right)±\sqrt{63504-196\times 18}}{2\times 49}
Whakareatia -4 ki te 49.
x=\frac{-\left(-252\right)±\sqrt{63504-3528}}{2\times 49}
Whakareatia -196 ki te 18.
x=\frac{-\left(-252\right)±\sqrt{59976}}{2\times 49}
Tāpiri 63504 ki te -3528.
x=\frac{-\left(-252\right)±42\sqrt{34}}{2\times 49}
Tuhia te pūtakerua o te 59976.
x=\frac{252±42\sqrt{34}}{2\times 49}
Ko te tauaro o -252 ko 252.
x=\frac{252±42\sqrt{34}}{98}
Whakareatia 2 ki te 49.
x=\frac{42\sqrt{34}+252}{98}
Nā, me whakaoti te whārite x=\frac{252±42\sqrt{34}}{98} ina he tāpiri te ±. Tāpiri 252 ki te 42\sqrt{34}.
x=\frac{3\sqrt{34}+18}{7}
Whakawehe 252+42\sqrt{34} ki te 98.
x=\frac{252-42\sqrt{34}}{98}
Nā, me whakaoti te whārite x=\frac{252±42\sqrt{34}}{98} ina he tango te ±. Tango 42\sqrt{34} mai i 252.
x=\frac{18-3\sqrt{34}}{7}
Whakawehe 252-42\sqrt{34} ki te 98.
x=\frac{3\sqrt{34}+18}{7} x=\frac{18-3\sqrt{34}}{7}
Kua oti te whārite te whakatau.
26x\left(2x-6\right)=96x+3x^{2}-18
Whakareatia ngā taha e rua o te whārite ki te 3.
52x^{2}-156x=96x+3x^{2}-18
Whakamahia te āhuatanga tohatoha hei whakarea te 26x ki te 2x-6.
52x^{2}-156x-96x=3x^{2}-18
Tangohia te 96x mai i ngā taha e rua.
52x^{2}-252x=3x^{2}-18
Pahekotia te -156x me -96x, ka -252x.
52x^{2}-252x-3x^{2}=-18
Tangohia te 3x^{2} mai i ngā taha e rua.
49x^{2}-252x=-18
Pahekotia te 52x^{2} me -3x^{2}, ka 49x^{2}.
\frac{49x^{2}-252x}{49}=-\frac{18}{49}
Whakawehea ngā taha e rua ki te 49.
x^{2}+\left(-\frac{252}{49}\right)x=-\frac{18}{49}
Mā te whakawehe ki te 49 ka wetekia te whakareanga ki te 49.
x^{2}-\frac{36}{7}x=-\frac{18}{49}
Whakahekea te hautanga \frac{-252}{49} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
x^{2}-\frac{36}{7}x+\left(-\frac{18}{7}\right)^{2}=-\frac{18}{49}+\left(-\frac{18}{7}\right)^{2}
Whakawehea te -\frac{36}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{18}{7}. Nā, tāpiria te pūrua o te -\frac{18}{7} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{36}{7}x+\frac{324}{49}=\frac{-18+324}{49}
Pūruatia -\frac{18}{7} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{36}{7}x+\frac{324}{49}=\frac{306}{49}
Tāpiri -\frac{18}{49} ki te \frac{324}{49} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{18}{7}\right)^{2}=\frac{306}{49}
Tauwehea x^{2}-\frac{36}{7}x+\frac{324}{49}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{18}{7}\right)^{2}}=\sqrt{\frac{306}{49}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{18}{7}=\frac{3\sqrt{34}}{7} x-\frac{18}{7}=-\frac{3\sqrt{34}}{7}
Whakarūnātia.
x=\frac{3\sqrt{34}+18}{7} x=\frac{18-3\sqrt{34}}{7}
Me tāpiri \frac{18}{7} ki ngā taha e rua o te whārite.