Whakaoti mō a
a=5
Tohaina
Kua tāruatia ki te papatopenga
\left(a+3\right)\times 2500=a\times 2000\times 2
Tē taea kia ōrite te tāupe a ki tētahi o ngā uara -3,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te a\left(a+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o a,a+3.
2500a+7500=a\times 2000\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te a+3 ki te 2500.
2500a+7500=a\times 4000
Whakareatia te 2000 ki te 2, ka 4000.
2500a+7500-a\times 4000=0
Tangohia te a\times 4000 mai i ngā taha e rua.
-1500a+7500=0
Pahekotia te 2500a me -a\times 4000, ka -1500a.
-1500a=-7500
Tangohia te 7500 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
a=\frac{-7500}{-1500}
Whakawehea ngā taha e rua ki te -1500.
a=5
Whakawehea te -7500 ki te -1500, kia riro ko 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}