Aromātai
5\times \left(\frac{y}{x}\right)^{2}
Kimi Pārōnaki e ai ki x
-\frac{10y^{2}}{x^{3}}
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\frac { 25 x ^ { 2 } y ^ { 5 } } { 5 x ^ { 4 } y ^ { 3 } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{25^{1}x^{2}y^{5}}{5^{1}x^{4}y^{3}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{25^{1}}{5^{1}}x^{2-4}y^{5-3}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{25^{1}}{5^{1}}x^{-2}y^{5-3}
Tango 4 mai i 2.
\frac{25^{1}}{5^{1}}\times \frac{1}{x^{2}}y^{2}
Tango 3 mai i 5.
5\times \frac{1}{x^{2}}y^{2}
Whakawehe 25 ki te 5.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{25y^{5}}{5y^{3}}x^{2-4})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(5y^{2}x^{-2})
Mahia ngā tātaitanga.
-2\times 5y^{2}x^{-2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\left(-10y^{2}\right)x^{-3}
Mahia ngā tātaitanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}